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PREFACE

This report contains the results of a " Study of Quasi-Optimum Feed-
back Control Techniques", performed during 1965 at the General
Precision Aerospace Research Center, under Contract NAS 2-2648
with the Ames Research Center, National Aeronautics and Space

Administration.

The principal investigator was Dr. Bernard Friedland; contributors
included Dr. Frederick E. Thau and Messrs. Victor D. Cohen and
Jordan Ellis.
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INTRODUCTION AND SUMMARY

A major limitation to the use of modern variational control theory for the design of practical
feedback control systems is the need to solve a two-point boundary-value problem of ordinary
differential equations in real-time. In most situations, the realization ofthe exact solution to
the two-point boundary-value problem is not feasible in view of the cost and size of equipment
which such a computation would entail. Moreover, the optimum performance, in many instances,
is only negligibly superior to that obtainable with a simpler, non-optimum control computation.
For this reason most practical feedback control systems continue to be designed by conventional
frequency-domain or cut-and-try techniques. There is ample evidence, however, of the short-
comings of conventional techniques for the design of control systems for complex processes; a
clear need exists for design techniques which employ the modern variational approach but do not
entail the solution of a complex two-point boundary-value problem. This need motivated the

quasi-optimum control technique of this study.

The basis of the technique is the observation that a complex process can often be approximated
by a much simpler process for which the exact optimum feedback control law can be expressed in
closed-form. This control law, however, may not be adequate for the actual process and must

be corrected to account for the difference between the actual process and its simplified model.
For this approach to be practical; it is necessary that the required correction be computed without

prior knowledge of the exact control law for the actual process.

It is shown in Part 1 of this report that if an exact solution to the “simplified problem" can be found,

then the required quasi-optimum control law can indeed be computed.

In principle, the optimum control law for the exact process can be expressed by the relation

v* = 0(x, P(x))



where u* is the optimum control, x is the state of the process, G(-) is a nonlinear trans-
formation chosen to maximize the "Hamiltonian" of the process, and p(x) is the "adjoint" or
"costate" vector which must be computed as the solution to the two-point boundary-value pro-
blem. The nonlinear transformation ¢ is generally easy to determine; the main difficulty lies
in computing p(x) . In the technique investigated here, the quasi-optimum control law is

expressed as
u=gl, PX)+MX)E) , E=x-X

where X is the state vector of the simplified process and P(X) is the corresponding adjoint
vector. (By assumption, P(X) can be computed from X.) The "correction matrix" M can be

computed by means of the matrix Riccati equation

" M=MHy o+ Hp M+ MR M+ H

where the coefficient matrices H'xP P HXX' are matrices of second partial derivatives of

the Hamiltonian of the exact problem evaluated at x = X. A set of “auxiliary equations”

& =Hypt*Hpp¥
b == Hyxé ~Hpgh

where Y = Mg

can also be used to determine M. Boundary conditions for the Riccati equations and the auxiliary
equations are obtained by linearizing the boundary and transversality conditions for the actual

process.

This approach is similar in some respects to a technique described by Pearson [ 1]. Pearson's tech-
nique, however, is limited to quadratic performance criteria, and to processes in which no "hard"
control variable constraints are present. These limitations do not apply in our technique. There

is also a close connection between our technique and the so-called "second-variation" techniques
{2, 3, 4, 5] . The principal distinctions between our technique and the second-variation techniques
are: (1) in our technique the "linearization" is performed with respect to a simplified process
rather than a "nominal trajectory" of the exact process; (2) in our technique the correction is

made to the adjoint vector rather than directly to the control variable. The latter distinction is




. particularly significant, as it permits treatment of hard control constraints which cannot be treated
by the earlier second-variation techniques. The use of our approach for linearizing about o
nominal trajectory is described in Section 1.5, but not considered in detail. A discussion of the

use of the technique for "mildly-nonlinear” processes is given in Section 1.6.

The underlying assumption of the technique is that the difference £ between the state x of the
actual process and the state X of the simplified model is small. A theoretical investigation of
the general relationship between the magnitude of £ and the performance of the quasi-optimum
control law was deferred for future study. Instead, the validity of the technique was illustrated
by means of several practical application studies, the results of which are described in Part 2 of

this report.

The first example considered was time~optimum control of the linear process x +ax = u subject

to the constraint |u| < 1. This form of "Bushaw's problem" was selected to verify the applica-
bility of the technique to a problem with a "hard" control constraint and to compare the quasi-
optimum solution with the well-known exact solution. In applying the technique, the damping
coefficient a was treated as a state variable, which, in the simplified problem, was assumed to
be zero. The switching curve obtained by use of the quasi-optimum technique differed from the
exact switching curve by only a few percent for a substantial range of x and x when a=0.3
(which is not really small). The switching curve for the simplified process, on the other hand, was
quite far from the exact curve. From this example it would appear that the technique is capable

of giving good results even when £ is not negligible.

The second application considered was minimum~-time constant-thrust rendezvous in free space. A
target-referenced polar coordinate system was used to describe the relative motion. The simplified
process was obtained by assuming no relative tangential velocity; the resulting control law is the
well-known one for the process X =u with ju| =1, but this control law was completely inade-
quate if the initial tangential velocity was nonzero. By use of the quasi-optimum control technique,
however, satisfactory performance was achieved even for problems in which the initial velocity was
only tangential, or when the tangential and radial components of velocity had equal magnitudes.

Here again good results were achieved for fairly large values of £ .



The third example treated was flight control of a flexible booster. A quadratic performance
criterion, consisting of a weighted sum of the drift of the vehicle from the trajectory plane
at burnout and the integral of the square of the bending moment was selected. The simpli-
fied model was obtained by assuming the vehicle to be a rigid body, and explicit, closed-
form expressions for the gains were obtained. The performance of this control law was
found to be inadequate in the presence of any appreciable flexibility. When the quasi-
optimum control law was used, however, good performance was achieved for moderately
flexible vehicles. When the flexibility was increased beyond a certain point, then even

the quasi-optimum control proved inadequate.

The application of the technique to minimum-time, three-axis attitude control of a space
vehicle with small but not negligible gyroscopic cross-axis coupling was considered. For
the simplified model the gyroscopic couplings were assumed to be zero; consequently the
simplified controller comprises three independent single-axis controls. The computations for
the cross—axis couplings, which entail only simple byt tedious algebraic manipulations, are

not complete.

Another example considered was guidance of @ maneuverable reentry vehicle. This study

was started late in the year and substantial effort will be required to complete the study.

The combination of the quasi-optimum control technique with a statistical parameter estima-
tion technique as a method of achieving adaptive control is described in Section 1.4; the

validity of the technique remains to be established, however.

Some of the theory of Part | and the first illustrative example of Part 2 was presented at the
1965 Joint Automatic Control, Troy, New York, June 22-25, 1965 in a paper by B. Friedland
entitled "A Technique of Quasi-Optimum Control.” (Preprint Volume pp. 244-252). The
general theory, including the alternate techniques discussed in Section 1.5 will be presented
at the Third Congress of the Intemational Federation of Automatic Control, (to be held in
London, England, June 20-25, 1946) in a paper by B. Friedland and P, E, Sarachik, entitled
"A Unified Approach to Suboptimum Control.




Part 1
THEORY

1.1 PROBLEM FORMULATION

We begin by stating the optimization problem in the manner of Pontryagin et al [6] ; the process is
described by the system of first-order differential equations

x = f(x, v) m

.where x = {xo, TR xn} is the state vector , u = {u], Ugr =eer ur} is the control vector,

and f = {f_, f], f], ceey fn } is a vector-valued function. The component X0 of x is a measure

of the performance. A feedback control law u = u(x) is to be determined which takes the process

from some current * state x(t) to a final state x(T), such that the performance index xo(T) is a minimum,

and the remaining n states satisfy the boundary conditions
@ (x(T)=0 2

where ¢ = {(p], L YARERY (ps} , s < n. The teminal time T may be either free or specified. In
addition, the control u may be required to be a member of a closed, bounded set Q.

The structure of the optimum controller can be determined by the maximum principle of Pontryagin [6].

Define the Hamiltonian function:
h(p, x, v) =p’ f(x, v) (3)

where p = {po, Pyr +eer P, } ond (*) denotes transposition, and where p satisfies the adjoint

equation

p=-grad h=-h (4

*The current time is denoted by the variable t, teminal time by T; time when it is used as an
independent variable is denoted by T, e.g., t <T<T.
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it is seen from (1) that

x=grad h=h )
x grap b

Nec essary conditions for the existence of an optimum control u* are:

(i) h is maximum with respect to u ¢ £, thatis,

h(x: u*, P)= 3‘:6 h(xl v, P) (60)
(i7) h(x, u*, p) = const (6b)

(iii)  The adjoint vector satisfies the "transversality conditions”

p(T) = [Q‘A ] %

where )\ is a vector of s constants

and

%,
¢= Kj i=],2,...,s;j=olll'°'ln

The optimum control system may thus be conceived as having the structure shown in Figure 1. The

transformation @ of the process state vector x and the adjoint vector p into the control
v*=0 (P ’ X) ®)

is defined by (6a), and is determined by maximizing the Hamiltonian (3) with ueQ . Equations (4),

(5) and (8), together with boundary conditions (2) and (7), define a two-point boundary-value problem.
Given the current state x(t) (if a solution of the boundary-value problem exists), then the adjoint

p(t) may be determined as the solution to the two-point boundary-value problem. Thus, (2), (4), (5),
(7) and (8) define a transformation ¥ of the current state x(t) into the adjoint p(t) . For most
applications, this transformation implicit in the solution of the two~point boundary-value problem
cannot be obtained analytically. Consequently, it is desirable to develop "quasi-optimum" procedures

which avoid solving the two-point boundary-value problem.



1.2 QUASI-OPTIMUM TECHNIQUE

The basis of the approach to be developed is the assumption that the original process can be approxi-

mated by a simpler process which has the following properties:

(A) The difference between the state of the original process and the simpler

process is small.

(8) The optimum control law for the simplified system can be found exactly;
that is, an explicit expression for the solution of the two-point boundary-value

problem for the simplified process can be found.
Suppose the state x can be regarded as the sum of two terms
x=X+¢ 9
where X is the state of the simplified process. Then (1) can be written
X+E=fX+g, v)

Furthermore, assume that £ issmall (i.e., [|E@)|| <€ for t <T < T where ¢ issufficiently

small). Then the origian! system can be approximated by the system
X= lim #X +€,0) = FX, v) (10)

where o {(X(T) =0 .

By defining a Hamiltonian H = P'F(X, u), a corresponding two-point boundary value for the

simplified system can be derived, i.e.,

X=H
P
(1)
P=H,
and )
P“"[é&(]

where A is an s~dimensional vector of "slack" variables.




The adjoint vector P, which by assumption (B) can be solved for in tems of X, may be regarded as

an approximate solution for p of the exact problem.

As £ increases, this approximation deteriorates, and may be inadequate. Consequently, it is desirable
to include the effects of the state "error" £ more exactly. For this purpose assume that a change P

in the adjoint vector results because of the error £, i.e.,

p=P+¥ (12)

Since p can be expressed as a function of x

p(x) = p(X + £)
by expanding about the state X, and retaining only the first two terms, we obtain
Jp.;
o0 =00 + |52

xmX
By (12) the first term p(X) is the adjoint vector P of the simplified problem ; the second term is the

vector £ premultiplied by a gain matrix

3
M (X) = [ij}

tx=X
Thus (12) can be written
p(x) = P(X) = M(X) £ (13)
and thus
() = M(t) &) (14)

The structure of a control system based on the above approximation is shown in Figure 2. The suboptimum
controller comprises three units: the @ - unit which is the some as determined for Figure 1by maximizing
h, the unit T which transforms X into P, and the gain unit M(X) by which £ is multiplied to yield

a correction to P.

For this method to be useful, one must be able to compute the matrix M(X) without prior knowledge
of p = vy (x), since if ¥ were known there would be not need to use the approximate control law (13).

To obtain a relation for M, differentiate (13) with respect to time:
b=P+ME+ME (15)

Likewise

X
]
X
+
Jyyr e
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Substituting these relations into the canonical equations (3) and (4) and expanding about the state

and the adjoint for the simplified process gives
2
+ HPPM)g +0(¢)

P
P +ME + ME = b= -h = (Hy, + Ho M)E + o)

where,
" _[azh } " _[azh ] o
xp = 33, ), _y PX ™ {3 3w, oy XP
g [azh } uo [ 3% h ]
PP Bpjapt =X XX BxJBx_L =X

Upon use of (11), and after dropping terms of O (5‘2), (16) reduces to

Jrr e

= (HXP + HPPM) [
ME + ME = ~(Hyy = HpyM) €
Substitution of (17) into (18) gives:

M + MHXP + HPXM + MHPPM + HXX)E =0

If this relationship is to hold for any & , the matrix M must satisfy the matrix Riccati equation:

-M= MHXP + HPXM + MHPPM + HXX

(16)

(17)

(18)

(19)

It is evident that if M is a solution to (19) then M’ is a solution to (19); thus, the solution to (19) can

be a symmetric matrix.

N



1.3 SOLUTION OF THE RICCATI EQUATION

To use the technique described above, it is necessary to obtain the matrix M as a function of the
state X of the simplified dynamic system. Solution of the Riccati equation (19) will give M as
a function of the initial state of the simplified process X(t) (since the coefficients of the partial
derivative matrices on the right-hand side of (19) depend on X(f)) and time t. In an outonomous
system, p can be expressed as a function of x only. Consequently the partial derivatives of p
are not explicit functions of time and the dependence of M on time must be eliminated. This can

be accomplished by expressing t as a function of X using the solution of the simplified system.
X = F(X, u(P, X))

The general problem of solving the Riccati equation (19) remains. Three methods of determining the

matrix M which were studied are described below.

(o) General Solution ~ A general solution to (19) can be obtained as follows. By substituting (19)

into (16) we obtain the system

e

= Hypl + Hpp¥
(20)

b =Hy o £ - Ho ¥

PX

when the higher-order terms are dropped. This is a linear system whose solution can be expressed as

EM =@ \(T, ) £0) + &, 0 YW
1)
B0 = @, (T, ) £ + &, (T, 1) ¥0)

where

<I>”(T, t) <I>]2(T, t)
YT, 1 = (22)
&, (1, 0 @1, 1)

is the "transition matrix" corresponding to:

12




Equations (21) are actually 2{n + 1) equationsin n + 1 unknowns. To solve we need (n + 1)

relations in addition to (21), These relations come from the boundary conditions.
Suppose that for the exact problem the boundary conditions'at T = T are given by (2) and (7).

If in the simplified process the boundary conditions are satisfied at time T, then in the exact problem
these conditions must be satisfied at T + dT.

By expanding the exact state and adjoint about the time T and dropping second-order infinitesimals,

we obtain
x(T + dT) = x(T) + x(T) dT
= X(T) + £(T) + X(T) dT _ (23q) -
p(T + dT) = p(T) + p(T) dT
= P(T) + H(T) + P(T) dT (23b)

Subsfi-tuﬁng (23a) in (2) and expanding about the state of the simplified process gives
@(X(T) + € (T) + BX(T) dT = 0 (24a)
Similarly, for the adjoint we have
. -1
PT) + $(T) + BT dT = | == (24b)
L2"X

Since the simplified problem has been clxssumed to satisfy the boundary conditions of the same form,

.e., @X(T) =0 and P(T)= [----:’ , then (24a) and (24b) reduce to the n + 1 independent

) A
equations
@£ () +XT)dT =0 (250)
$ (1) + B(T) dT=&"7 : (25b)
where .
n= A-A

Finally, we must have

e 2H oM
dH = &' 3¢ + ¥ 5%
(26)
=P E+ XV =0

13




Equations (25a), (25b) and (26) give a total of n +2 relations. Since dT is an additional variable,
there are just enough equations needed to solve (21) for ¢(t) as a function of £(t) and thereby

obtain M(t).

In most cases, the linear differential equations (20) have time-varying coefficients and as a result
cannot be solved analytically. Hence, it becomes necessary either to approximate the solution to

the Riccati equation or the integrate (19) numerically.

(b) Numerical Solution = Numerical integration of the Riccati equation requires that boundary

conditions (25a) and (25b) be translated into conditions on M(T). Consequently, (19) must be inte~
grated backwards in time starting at T = T. Part of the complexity of this problem arises because
the matrix M(r) may not exist at 7 =T, hence, the boundary conditions cannot be translated

directly into conditions on M(T). This problem may be circumvented by expressing M(t) in the form
- -1
M(t) = S(t) - RH)Q (R (1) (27)

integrating systems of differential equations for S, Q and R fora small time A backwards from

T and using the results to compute M(T - A).

-Let the matrix Riccati equation be of the form

M =MA +A’M + MBM +C (28)

where A=H B

XP’ C=H

“Hpps C=Hyx
Suppose we have any solution S to the matrix Riccati equation (28), i.e.,

-5 =SA +A’S +SBS +C (29)
Then the desired matrix M con be expressed in terms of S by (27),

M=5-RQ 'R’

where Q is a symmetric (n +1) x (n x 1) matrix and R is a rectangular (n + 1) x (s + 1) matrix.

Matrices Q and R in turn satisfy the differential equations
-R= (A" +SB)R (30)
-Q = R’BR 31)

To verify (27) differentiate both sides of (27) and substitute into (19). The result is

14



S+ra R -ra o R +rQ7 TR
=(S - RQ"R')A +A’ (S - RQ"R') +(S - RQ"R') B(S - RQ"R') +C
= (SA+A’S)+C -RQ 'R’ (A +BS) - (A’ +5B) RQ 'R’ + RQ 'BRQ 'R’

which, upon use of (30) and (31), is an identity. This result is a generalization of the result

obtained by McReynolds and Bryson [9] .

If Q(T) is singular, then M(T) cannot be expressed in the form of (27) moreover, M(T) may not
exist. However M(T - A) can be computed by integrating (29), (30) and (31) (backwards) from
T=T to 71=T-A until Q(T -A) is nonsingular and then using (27), i.e.,

M(T -4) =S(T - ) = R(T -2) G (T - A) R'(T - 2) (32)
From T =T - A back, (32) can be used as a starting condition for (19).

The boundary conditions on S , R and Q can be determined by taking the solution of the
auxiliary system (20) to be of the form

Ppa)=S@)E@) +R() ulr) (33)
where Q) ulr)=-R'(r) £ (1) (34)
i we define
S —
n 3
pm= |4
(4T | 41
= [k 1w ] (35)
RN J,~ ]——»:‘
am | e |k
Q) = 4 -
| a'M ; oM | |
thenat 7 =T, (33)and (34) are
(1) = S(T) £ (T) +R(T)  +r(T) dT (36)
Q(T)n +q(T) dT = -R(T) £(T) 37)
q’' (Mn +c) dT =-r'Me ) (38)

15




The unknowns S(T), E(T): r(T), 6(T), q(T) and c(T) must be chosen to satisfy the boundary conditions

(25q), (25b) and (26).

It is seen that (25b) is satisfied by making

sSM =20
R = &
W) = -PB(T)

With this choice of R(T) and r(T), (37) and (38),
QMM +q(MdT = - @ £(T)
PmE (M)

q'(T)n +c(T) dT
Condition (25a) is satisfied by making

q(M = &X(M

Qm =0
then (40b) becomes

X'(M@'n + (1) dT = PME()
which upon use of (25b) and (26) becomes

X' (90 + PN dT] + () dT = - X" (Mb(T)
which is an identity for

c() = X’ (P(T)
In summary, the required M(t) can be expressed as

M=5-RQ R

(39)

(40a)
(40b)

where S, Q, and R satisfy (29), (30) and (31), respectively, and where the following terminal

conditions apply
sS(M=0

R(T) = [ @ i-ﬁ(r)]

16
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(c) Approximation - Insome cases, it may valid to approximate the solution to the Riccati equation.

Since the use of (14) to generate the adjoint vector p is already an approximation, this "compounds
the approximation, " but still may give satisfactory results. The obvious approximate solution of (19)
is the asymptotic solution obtained by setting the left~hand side to zero. The solution to the result-

ing equation
MH o + Ho M + MH M + Ho o = 0 (42)
is the desired approximate value of M. (This is similar to the proposed solution of Pearson [1].)

An illustration of this technique is given in Section 2.2. Unfortunately, this technique may not

always work, because (42) may not possess a nontrivial solution.

17




1.4 INTERPRETATION OF M

When the adjoint vector p can be interpreted as the negative gradient of the optimum performance

function (7]

p = -gradXV (43)

where,

Vix) = u";'(? xo(M

obtained as the solution to the optimization problem, the Hamiltonian is given by:

-h = #(x, v) grade

and (5) becomes the Hamilton-Jacobi differential equation.

Upon differentiation of p given by (43) we obtain

ap. 2

. J 9 V e

P=[ Jx=- * (44)
xj sz

where,

62v _ a2v
2 axiaxj

Comparing (44) with (13) it is found that

x=X
the negative Hessian of V with respect to the state x. In this case M(X), being a matrix of

second partial derivatives of a scalar function, of course, must be symmetric.

Another relation which must be satisfied by M(X) is obtained by setting x = X in (44). In this

case p = P and we obtain:

P = M(X)X (45)

This means that if P and X are the solutions to the simplified problem, the desired matrix M(X)

must satisfy the above equation. Thus (45) can be employed asacheck on the calculation of M(X).

18




J.5 ALTERNATIVE TECHNIQUES

Alternative approaches to computing a quasi-optimal control may be developed by making use of the

relations

p(D = P(t) + ¥ (1)
and

b = MNEW

A technique based on this development consists of storing trajectories X(t), P(f) and M(t) in the
controller (or by generating these quantities by integrating (11) and (19) with nominal initial condi-
tions X(0), P(0), M(0)) and computing the control

u(t) = o(X(1), P(t) + M(DE®) 0<t<T
as shown in Figure 3.

This technique is very similar to the second-variation techniques of Kelley [3] and of Breakwell,
Bryson and Speyer [2] , except that here the adjoint vector P(t) rather than the control u(t) is
stored. The difference is relatively insignificant when u is a continuous function of p, but is of
major significance when u is a bounded, discontinuous function of p. For example, if the optimum
control law is of the form u = sgn (c’p) then there is no reasonable  way to make a linear correction

to the nominal control u, but u =sgn [’(P + ME) ] is an entirely reasonable control law.
A second method of employing the suboptimum technique is based on (45).

The adjoint vector can be obtained by integration of (45);
t

p =p0)+ £ M5 d7 (47)

This relation leads to a control system with the configuration shown in Figure 4(a). It is noted that
the derivatives of the state variables instead of the state variables themselves are the quantities fed
back. Hence this technique is particularly applicable to problems in inertial guidance, where the

principal sensors are accelerometers.

In the event that x cannot be sensed, an alternative configuration can be obtained by partial inte-
gration of (47):

t
b =p0)+ Mx - M(O)x() -J Mx dT (48)

19
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X(t)

+

E(t)

P(t)

+
+ PROCESS x{t)
M(t) ﬁ%@ e Fo| k= tix,u)

yit) plt)]

SUBOPTIMUM CONTROL BASED ON
STORED NOMINAL TRAJECTORY
FIGURE 3




p (o) l;

L =hv —— PROCESS
| f id x = f(x,u)

X

(a) x MEASURABLE

ﬁ

u x= f(x,u)

p(0)-M(o)x (o)

(b) x NOT MEASURABLE

SUBOPTIMUM CONTROL BASED ON p(o), M (o)
FIGURE 4
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The right-hand side of (19) is used for -M in (48). The control system configuration corresponding

to (48) is shown in Figure 4(b); it is seen that only the state x is required in the controller.

In either implementation the matrix M would be generated by real-time integration of (19) with the
nominal initial condition M(0), and the nominal initial adjoint state P(0) would be used. Thus, to
achieve near-optimum performance, the actual initial state x(0) should be reasonably close to the
nominal initial state X(0) for which M(0) and P(0) were computed. If the closed-loop system is
asymptotically stable, however, the effects of using initially incorrect values of M(0) and p(0) will

be only transient,

An example of the application of the control technique of Figure 3, in which the control variable is
bounded, is discussed in "A Unified Approach to Suboptimum Control" by B. Friedland and P.E. Sarachik,

to be presented at the Third Congress, International Federation of Automatic Control, London, England

June 20-25, 1966.
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1.6 BOUNDED CONTROL VARIABLES

When there are "hard" constraints present, such as uj < K_j , there is a further difficulty in com-
puting the matrix M. The difficulty arises because Hp generally turns out to be a discontinuous
function of the adjoint variables == typically v =sgn (c’p) -- and thus the partial derivatives

do not strictly exist at the points of discontinuity, i.e., upon the switching surface. As Kalman [7]
and others have pointed out, this behavior precludes identification of p with the negative of the
gradient of V and also raises doubts about the validity of the Riccati equation (19) and the associated

linear two-point boundary-value problem (20), (25) and (26).

As a consequence of the discontinuities in the control, some of the second partial derivatives of the
Hamiltonian may not exist in certain regions of the state space. By applying the quasi-optimal

procedure to the Bushaw problem, however, it was found that inclusion of the delta functions which
arise from formally differentiating the discontinuous Hamiltonian function gives the correct answer.

Details of this calculation are given in Section 3. 1.

The use of delta functions can be probably be justified by a careful limiting procedure, i.e., by
defining a sequence of problems, each with a constraint on the control variable which approaches
closer to the bounded constraint than the previous, and then showing that there is a limiting solution

which is the one obtained by use of delta functions.
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1.7 QUASI-OPTIMUM CONTROL OF MILDLY NONLINEAR PROCESSES

Consider a special case of the general process

x = Ax + uf(x) + Bu (49)
with a performance criterion

1 T
V= 5 ff (x'Rx + v Qu) dt (50)

which is to be minimized, where T is fixed; Q is a positive-definite matrix; ¥ is a small para-
meter, and f(x) is a nonlinear function which is twice differentiable with respect to all its arguments.
When pu=0, (49)becomes a linear process and, for the quadratic performance criterion (50), a
linear feedback law results. The problem we wish to treat here is the determination of an approxi-

mate control law when p is small but not zero.
Exact Problem - The augmented state of the exact process is defined by

x={x0,‘r,x,p} (Y
with the following auxiliary differential equations

>'<0=%(x'Rx+u'Qu), +=1, p=0 (52)
where X9 is the performance, and x is the n-dimensional state vector.
The adjoint vector for this problem is defined by

p={po,p,r,P,Pu} (53)
and the Hamiltonian is

[
h= -22 (x'Rx +u’'Qu) + P +p’ (Ax + puf(x) + Bu) (54)

Application of the maximum principle gives the optimum control law as

u=——]—-Q-IB'p (55)
Po

and this control law results in the following expression for the Hamiltonian

Po | S ,
h——i—x Rx--2¥- BQ Bp+pT+pr+pf(x)p
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* The canonical equations are thus

N e+ — p’ BQ_]B’p 0
2 2 2
Po
X = - l - b4 = = 0
X hp p hx
-1
_BQ B'p . of
Ax +f(x)p Po PoRx + [A" + u(Fp (56)
B 0 N i p’ f(x)
- The following boundary conditions apply at the terminal time T
xo(T) = minimum; po(T) = -]
T(M=7 Pt(T) free
(57
x(T) free p(M)=0
free (M=0
[ P“ |
Simplified Problem - For the simplified problem we take gy =0, whence
X={XOITIXI0} r P={Pol E,-,P’o}
The canonical equations (56) and (57) become
. 1., | PEC) .
XO—E(X RX+—2PBQ B’P) , T =1
Po
X=AX - BQ"B'P/PO
P0 =0 , PT =0
P= -PORX -A’P
Since ISO =0, I:) = constant = -1 hence the equations for P and X are
X = AX +BQ B’ P
(59)

P=RX - A’P




The solution to (59) is
X(T) = @, (1, )X{) + &,,(7, )P(H)
P(r) = &,,(T, )X({) + & (7, P(H)

where

<1>”(T, A MU
o 1) =[<I>2](‘r, N @, t)}

is the fundomental matrix for the linear time-invariant system (59).

Applying the boundary condition P(T) = 0, (61) gives rise fo
_ -1
P(t) =" ¢22 (Tl f)Qzl(Tl f)X(f)

or, more generally,

P(T) = KT, T)X(M
where

KT, 7= - q>2'2'(1, T)¢2,(T, T)

(60)

©n

62)

©3)

The gain matrix K(T, 7} can also be obtained as the solution to a matrix Riccati equation:

substitution of (62) in to (59) gives

X = (A + BQ-]B’K)X

P=KX+KX=R-AKX

for any X. Multiplying the first equation by K and subtracting results in the matrix Riccati

equation

-K=KA + A'K + KBQ™'B’K - R
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* Since <I>2](T, T) = 0, the condition which must be satisfied by K(T, T) is

KT,T) =0 65)
Quasi-Optimum Control - In accordance with the general theory, the approximate value of
p isgivenby
= P+ FA

Py
where M is the comrection matrix, and is conveniently partitioned as follows

’ -
™00 ro Cox M0
(4
) Mrr Trx mu'r
N (66)
T ox P o Mxx Ly Mx
m m m’ m
L u0 ur - xi 17T
Mxx is an n x n matrix, LA ﬂm, and m,. ore n-vectors, and all the other quantities are

scalars, The submatrices appearing in (66)--not all of which are required for suboptimum control
law--are to be found with the aid of the auxiliary equations for § and £ or by use of the matrix

Riceati equation, The following matrices are required:

0 0 xR 0
XP 1o 0 T
0 0 0 0 |
P'BQB'P 0 PRQE 0 |
0 0 0 0 ©7)
Hpp = -1 -1
B BP0 BB 0
0 0 0 0
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0 0 0 0
1o 0 0 0
Hyx =
0 0 PR (a/ax)'P
0 0 PR/ O

with P0 = -1, P = KX

The auxiliary equations for E and ¥ are

£ -n xeE + Hoe?
%= Hoo £+

1]

It is convenient fo partition £ ond ¥ the some way as X and B, i.e.

-~

= lgg tp & &)
[

(g by ¥ 8]
In terms of the subvectors of £ and ¥, the expressions of (20) become:

£ = X'RE + P'BQTIBPY) + P'BQTBS

(7]

$o= O

bp= 0

b = RE - (af/ax)'Pe - RX"§) - AP

P’ (df/a)€ - (X)'P

The relevant boundary conditions are

$oM= Py(T) dT=0
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69)

(6%a)
(6%b)
(69¢)
(69d)
(69)
69f)

6%)
(6%h)

(70)



£, = 7dT = dT (70b)
Y = P(T) dT = RX(T) dT (70¢)
'bu(f) = P“(T) dl =0 (70d)

and i"g = 32('4) or
X MREM = 7 X’ MRXM, ) + ¥, + X’ MA"$() (70¢)

From (69e) and (70q)
byt) = 0

Consequently, the first row and column of the transition matrix and of the matrix M in (64)

are zero, Also, from (69d)
T) = const =
Ep( ) st =4

Hence, (69c) and $9%g) can be written
£ = Ap+ Q7B + X

. @)
b =RE - AP - (Of/ox)"Pu

It is observed that the matrix coefficients in the homogeneous form of (71) are the same as for
the exact problem (59). The solution to (71) can be expressed in terms of the blocks of the fund-
amental matrix defined in (59) and (60):

r

&, (1, DED) + &7, 1Y0) +J Bl (5 VFX) - &, (7, NE/)P] dA

£(7)

(72q)

b = 2y, E0) + Oyl M0 + ", (7, NFX) - B, (7, N(2F/2) P]

Evaluating the second equation of (72a) at T= T and employing (70b) and (70c), we obtain

T
w0 = a1, n{RxmE, - @1, 9L - pJ [, (T, NFX) - &, (T, A)(aF/2x)" P] A ]
725)



Since, in accordance with (66),
) = m £ )+ M ED) tm u 73)
it follows from (72b) that

m o (1 1) = @55 (T, DRX(D) 74)
M (T, 1) ==, T, 08y, (T, 1) = KT, 1

T
9= = 85500 [y 100100 - 81 M) 61/207P1 b 79

Although the other components of M defined in (66) can be obtained by use of (A0d) and (70e),

they are not needed for the quasi-optimum control law: only Po and p are needed, These are
given by

Po = Po * (mogr mpgr Mg, » my0)E

1]

p P+6.!0<Ir!1le ,m)g

ST

~
Since the first ow and column of M are zero

Also, since P(t) = K(T, t)X(t) and Mxx = K(T, 1),

o
]

- K(l', f)[x + g] + T‘I‘xdT + m_#xu,

(76)
M

K(T, t)x + T‘rxd' + m,

The second term on the right-hand side of (76) is a correction due to a change in time (clock error)

and can be ignored. Consequently, from (53) the quasi-optimum control law is
-1
v=Q BK{T ™ +m &, TH) 77)
'1”‘(’(

where L is the nonlinear, vector-valued function of x defined by (75). The control system

has the configuration of Figure 5.
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—DA K (T, t)

+
ae Lu PROCESS
'8 = 5u A+ p i+ Bu

g)rmﬁ(x,t)

QUASI-OPTIMUM CONTROL SYSTEM
FIGURE 5
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Note that the nonlinear feedback is proportional to the parameter pu, so that the system is

predominantly linear, with a small nonlinear correction.

Differential Equation for rgux - Instead of having to evaluate L by integration of (75),

which requires the @2] and 32 matrices, if may be more convenient to find mix by integrating

a differential equation, Provided f(X) and 3f/3X have no impulse at T=T, (75) gives
TMX(T' T) =0

Using (73) and (69b),

b= Lt M EEM ESm

Substitution of this relation and ¥ given by (73) into (71) results in

- _'I '
E= A BQTB byt ME S my )+ O

mfng + Mxxg + Mxxg + "lux“ =R¢ - A ("11'x€‘r+ Mxxg + m_uxu) - (3f/3x)' Pu

Multiplying the first by Mxx’ subtracting the second, and using the fact that gT, ¢, and
i are arbitrary, leads to the following equations

M =M A+AM +M BQTE'M  -R
XX XX XX XX xxX
. _ ? "'] Y2
..[n-‘rx = (A + MXXBQ B )lTlTx
-, -1,
e = A M BRI+ M) + (3f/3x)P

Thus, since Mxx = K, (80) and {81) are differential equations by which LI and m_Mx

can be computed. It is of interest to note that the homogeneous form of (80) and (81) is

b= -1 ’ =

b=- (A +BQ 'BK)'b b-@‘rx’mm)
which is the adjpint differential equation for the differential equation for the closed-loop .
simplified process.
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* Application to a Linear Process - A special case of interest is when f(x) = Fx, that is, the

nonlinear process (49) reduces fo a linear process. In this case "-‘#X is a linear function of x,

and the quasi-optimum control law (77) becomes

Q1B Kx + L) = Q7B K + pl)x (82)

S
1]

where
m = lx
-1x
Thus the quasi-optimum control law is linear in x. This is not surprising, since the exact optimum
control law is also linear in x. In fact the exact control law is given by
v = QB (83)
where S satisfies the matrix Riccati equation (64), with S(T, T) = 0 and A in (64) replaced by
A + pF, Thus
“§= S + pF) + (A" + pP)S + SBQTVB’S - R (84)

Comparing (82) and (83) however, we must have, to first order in p,

S=K+ulL (84)
or
“R-pl = (K + p)@A + P + (A" + g )(K + pl) + (K + plBQ'B'(K + L) - R

On expanding the right-hand side of this equation and equating the constant terms and the

coefficients of i on both sides we obtain

I}

- K= KA + A’K + KBQ™'B'K - R

~L=LA+ BQ"B'K) + (A’ + KBQ']B’)L + KF + F'K (85)
Thus L is given by a linear equation of the Riccati type, with KF + F/K as the forcing function,
Now consider (81) with Mxx =K, 'P-pt = Ix, P=Kx and f(x) = Fx, We obtain

“Lx - ix = (A" + KBQ 'B')ix + (KF + F'K)x (86)
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but
% = (A + BQ'BK)x (87)

Hence (86) and (87) are equivalent to (85). Thus the general expressions for M given by

(75) and (81) can be viewed as an extension of the linear correction considered here.

Although the exact problem when f(x) = Fx can be solved by use of (84), there are possible
advantages to be gained by using S = K + pL, Consider a flexible booster, for example, The
process is linear (for small angles) but of quite high order. If the stiffness is high, however,

then a rigid body model of low order might be a reasonable first approximation, p can be regarded
as the reciprocal of stiffness, and L then becomes the correction due to flexibility. This technique

thus permits the separation of the "rigid body gains" from the "flexible mode" gains,

Asymptotic Solution - If the terminal time T is infinite, then the gain matrix K for the simplified

problem becomes a constant K_ (when the process is observable and controllable) that is the
asymptotic solution to the Riccati equation (64) can be obtained, and by setting the left-hand
side of (64) sequal to zero. The asymptotic expression for ™! if it exists, is given by the limit
as oo of (75). It is tempting to assume that the asymptotic solution for M ix can be obtained
by setting Mxx equal to K_ and mx = 0 in 81), and solving for _rg_“x. Unfortunately this
procedure is incorrect, since in the case m ‘- Lx, itresultsina L matrix which is not
symmetric. The reason is that (81), with Mxx = K_, is the adjoint to a stable system (the closed
loop system) which does not possess an asymptotic solution. To find the asymptotic solution, it

is necessary to solve (79) and (81) concurrently. It is noted that ﬂux(m' T) depends on x(T),

so it is not feasible to solve (79) and (81). The integral form (75) however, may be capable of

being evaluated if f(x) is a simple analytic function.
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Part 2

APPLICATIONS

In order to verify the validity of the quasi~optimum control technique and to obtain some
qualitative insight into some of the difficulties and limitations of the method, a number of
"practical” problems to which the technique appears to be applicable were studied. The
word "practical" is enclosed in quotation marks here to emphasize that even the equations
(1) for the exact model entailed a considerable simplification of the actual physical be-
havior of the process; the simplified model (10) is a still further simplification. In all cases

considered the further simplification led to a lower-order system of differential equations.

No theoretical difficulties were encountered in any of the examples studied; the algebraic
calculations, however, although straightforward, were quite tedious and involved. Con-

sequently progress was slow and calculations had to be checked frequently.

The following problems were considered:
1. Bushaw's Problem
Minimum=Time, Bounded Acceleration Rendezvous in Free Space
Flexible Booster Attitude Control
Time-Optimum 3-Axis Attitude Control of a Space Vehicle

Minimum~Miss Distance Maneuvering Reentry

o G AW N

Adaptive Control
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2.1 BUSHAW'S PROBLEM

The first illustrative example is the "classical" minimum time problem for a plant having the transfer

function 1/5(s + a) with a bounded control variable.

Exact Problem = The sytem is governed by the following differential equations

%0

x] = -x]x3+u
Xy =%y
>'<3=0

It is desired to minimize xo(T) with
xI(T)= x2(T) =0and |u|<1
The Hamiltonian for the complete problem is:
h =Py +Pylv = xpxg) +pyx,
and the maximum principle gives

U =sgn p](f)

The corresponding adjoint equations are

Py =0

Py = P37 P
Py =0

Py =P

Simplified Problem - Since x

problem is obtained by taking x

the equations for the simplified problem are (1-1)-(1-5) with Xg = 0 . Hence

36

3= 0, x4 = a = constant from the exact problem.

(1-1)

(1-2)

(1-3)

(1-4)

(1-5)

The simplified

q=a= 0, to which the transfer function 1/52 corresponds. Thus




Po =P = -1 = constant
Py = P] = P]0 - P2t, P]0 = constant (1-6)

Py = P2 = constant

where t is time measured from the (arbitrary) starting instant. Thus,
U =sgn (PIO - Pzt)
) { U, 1< P]()/P2=ts (1
-u, t> Plo/Pz
where,
U =sgn (P]o/Pz) =% 1
Substituting (1-7) into (1-1) and integrating to the terminal time T, results in the following relations.
X‘(T) =Xt U(2ts -T=0

T2

_ _ YN
Xy =X * X1 T+U 5 -UT -1)"=0

(1-8)

The simultaneous solution of (1-8) for the time-to-go T and t gives, after dropping the subscript 0,

T = -Ux +2(3 X2 - ux )?

(1-9)
t = P'——ux + (4 x2-ux %
s P o1 \2™ 2
2
But, from (1-3),
H=-1+PU+PX,=0 (1-10)
which, together with (1-9) yields
X
P, =U-
1 1.2 £
(5X] -UX,)
(1-11)
b U
27 T2 _ x\®
(7 X, UX,)
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The switching curve is given by P] =0, or, from (1-11)

1,2 1.2
X2— §UX]—:i:2X] (1-12)
as is well-known.
Quasi-Optimum Control Law - The quasi-optimum control law will be taken as
v =sgn (P] +m ]3x3) (1-13)

where P] is the component of the adjoint vector corresponding to Xy in the simplified problem.
Next, we wish to compute the gain matrix M. The matrices appearing in the Riccati equation
(19 ) are obtained by performing the required partial differentiations on the exact Hamiltonian

(1-3) dnd evaluating at x = X . The results are:

0 0 0 0 0 0
e 0 0 X, oy = 0 1 0

O 1 0 0 0 0

o 0 o o 0 X, 0 0

b o 0 0 [0 0o o o |
Hop = 0 () 0 0 = 0 0 0 -p

0 0 0 0 0 0

o o 0 0 -P 0

where P] = Pl(f) is given by (1-6), and

X]o+Ut t< ts
X, = X 6)-Ut b=t (1-14)

The term 26 (P]) is an impulse (delta function) occurring at the instant that P](f) =0, i.e.,

at t=t. It is the treatment of this impulsive term that we wish to illustrate in particular by this
example. The gain matrix M(t) will be computed by utilizing the auxiliary system (20) for the
Riccati equation along with the transition matrix (22 ). There is no loss of generality in taking the

initial time t=0. Hence the fundamental matrix can be written

o(T,0) = &(T, )t , ot , 00 <t <T (1-15)
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. - . + = - . - -
* Were it not for the impulsive term, é(ts , fs) would be the identity matrix, but in the present case

+ -
<I>(ts , ts) contains off-diagonal terms resulting from the impulse.

+ -
To compute &(T , fs) and @(fs , 0), we can ignore the impulsive term. To facilitate the compu-

tation of these matrices we write (20) in component form

£y=0 by =0

£,= X k5 + 25 (BMNY, =Py
E,=¢, b0

£y=0 by = Rk Xy

These equations can be integrated with little difficulty from t to t: and from f: to T. The

solutions can be expressed as

EE ) =2, 0)£0) +&,¢ , 0% ()

() =@, , 0)£0) +&,¢ . 03 0)

where
1 o0 o0 o )
0 1 0 -X.t -U2P
10's s
&,t, 0 = 2 3
ot 1 = Xt = U] /6
o o o0 1 |
le(ts, 0) =0
_ o o
2
0 B /2
@), 0) = 0
0
2 3
i P?_fs/z fs/é ]
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1 0 0 0
0 1 -t 0
0t 0 =1 o 1 0
0 X .t + Ut2/2 -X r2/2 - Ut3/6 ]

10's s 10's s

Likewise

£ =),1)E6)) + )8 ()

+ +

$) * Splr)v )

M =2, @)E

where T =T-fs

and 0 0 0 0
0 1 -Urln
e =l o 4 1 Ty
0 0 0 ]
¢]2('r)=0
"0 0 0 0 .
0 0 0 -P12/2
o, (r) = 2
21 0 0 0 0
2 4
[0 -prln2 0 - URs*/6.
(1 o 0 0 ]
1 -T 0
%0 =10 o ] 0
0 ur? ol

Next we must calculate the transition matrix <I’(fs ’ f;) .
The impulsive term appears in only one differential equation of the set (1-16):
£, =X &5+ 26(P1NY,

Integrating we obtain o +

H S
£, =£,07) - /Xl(f)€3(f)df+ /za(P]«»zp,(r)dr

ts fs
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-

.

The integrand of the first integral on the right-hand side of (1-16) is continuous and hence the

+ - .
integral vanishes as tot. To evaluate the second integral we employ the formula (8]
6(t- fs) _
——— fs <t<t
LT

But ”’](ts)l*—'UPz:Pz/U from (1-11). Hence (1-17) becomes

5(P,) = .
£0) =&, +%’5 $t)
(since 4)](?:) = tb](f:')) . Thus
814071 = &yl 1) = 1

+ o2
’21“5"5) =0

and o o o 0
_ |0 wmo o

eptt)= 1o o "o o

o 0o 0 0

Finally, on performing the matrix multiplication indicated by (1-15) we obtain &(T,0) with com-
ponents given by

T 0 0 o0 ]
o r.0) - 0 10 X T+ UX, /2
ny- v 12 3
o T 1 XioT</2 + X3 /6
0 o0 0 i
[0 0 0 0
0 2u/p 22Ut /. 0
P 2 T,0) = 2 s’ 2
2UT/P2 -2UtsT/P2 0
0 o () 0
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0 0 0 0
0 o 0 - UPX.T/2
6.1, 0) = X107
21\ 0 0 0 0
0 -UBX,T 0 C
where C=P Xt (T-1)/2+UP (T-t)4/6+f3/6
2°710's s 2 s s
1 0 0 0]
0 1 -T
0.0 =4 o 1
2 3
| 0o - Uxm/z - x]0/6 14

To obtain the gain matrix M, we now make use of the boundary conditions (25) and (26) which

result in
g =-X,(T) dT=Udr
£5(T) = -X,(T) dT =0
Yo(T) = -B(T) dT =0
b5(T) = -B(T) dT =0
Ry(T)E | (T) = Uy, (M) =0
respectively.

Using these relations with the fundamental matrix &(T, 0) previously calculated, and then elimi-

nating T and s by use of (1-9) we find the relations between lb?./o and gw:

¥10 mp M Mgy [éy
Yo | T[™2 ™2 M| |62 (1-18)

¥30 Mg My M3 |ég
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where myy = PoXog
mip= PpXpo/2
mi3= X /6 - PX 5 + X,
™1 = Py X /2
myy = -UPY/2

0

_ o3y 3
m,s = -UP) X 2/6

4 2

may nglo/“"’leo*xl
_ 3,3

may = -UPIX 3/

el y 8 e 4 3, 3
3—U(P2X]0/18 sz1 2+2x]0/3 P2/3)

0

™3
The 3 x 3 matrix above gives the elements m,LJ(O)'t,j =1,2,3. (The mg, =M, o terms

are obviously zero and not needed.) Since X]0 and X, are arbitrary,we can drop the subscripts

20
0 everywhere in (1-18) and thus obtain the relation between ¢ =9 (t), £ = £(1) forand X = X(t).

Consequently the last three rows and columns of M(X) are given by the matrix in (1-18).

Only ine element Mg of the above matrix is needed for the quasi-optimum control law (1-13),

which thus becomes

3 ‘;' (1-19)

= | -p x2 -
U =sgn [P] + (Z P2X P2X] +X]) a] , a=x

3

where P] and P2 given by (1-11). The approximate switching curve is obtained by setting
the bracketed expression in (1-19) equal to zero. The resulting switching surface is the curve labeled

QUASI-OPTIMUM in Fig. 1-1, for a =0.3.

Comparison with Exact Solution - The exact problem in this case admits an analytic solution which can

be compared with the control laws for the simplified problem and the quasi-optimum control law (1-19).
The exact solution is obtained as follows. The canonical equations (1-1), (1-4) and (1-5) can be
integrated explicitly over the interval [t, T] . Equating the results to the corresponding terminal con-

ditions results in
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COMPARISON OF EXACT AND
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xg(M) =7

x.t

0=x](T)=xl+-L-J—(2e3s-e-°T-])
X
3
S
3 ~x,T
O=x2(T)=x2+]e x]+2[—-7+2t +e 3
*3 *3 "3
a=x3(T) =x3(=consfont)
- 1= pO(T) = p0(= constant)
X,T a7

P](T) =e 3 [P] - pz(]-e x3 )]

P,(T) = py(= constant)

where T=T-1t

1 P2
t = — log (5— )
s Xg 1 P1%3

U =sgn py=2 1
Using these relations and the Hamiltonian (1-3) we obtain

-- 2log s
T U(x]+ox2)+ S

ax](S-Z)
=U -
Py BUx, - DG - 1)
_ay
P =%
x2
_ 2log S 1
Py = Ut = (G,
where aU(x]
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The exact switch surface is given by setting Py = 0 and is found to be

2

and is the curve labeled EXACT in Figure 1-1. It is seen that the exact and approximate curves differ

by less than one percent for x < 4, whereas the curve which would be obtained for a = 0 differs

considerably from the optimum.

It is also of interest that the expression obtained by expanding the exact switching curve (1-20) ina

power series in a, namely

2 3
Ux] 1

al—

1
+-3-ax

N —

x2=—

and retaining only the term that is linear Is a very poor approximation for ax’y, > 1 or, in this case,

1
for x> 1.73. In fact the curve is not even single-valued.
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2.2 MINIMUM-TIME, BOUNDED ACCELERATION RENDEZVOUS IN FREE SPACE

The second example chosen to illustrate the quasi- optimum control technique was that of

rendezvous in free-space (zero-g) in minimum time.

Exact Problem - The motion of the vehicle relative to the target is described in a target-referenced

polar coordinate system (see Figure 2-1) as follows

a2/ - v do/dt = f fm

2,2 @2-1)
rdp/dt” + 2 (dr/dt)(dpAD) = f‘p/m
Define a new set of variables as follows
xg = t, X, = (dr/dt)/a, Xy = r/a, Xq =T (do/dt)/a
where the acceleration a = f/m .
In terms of these new variables, the equations of motion become
io =
. 2
Xq =X,/ X, TV
1 =%ty 2-2)
x2' = Xl
X3 = X yxgfy Uy
where u, = cos 6, u, = sin (2-3)
The problem is then to minimize xo(T) subject to the constraint
Lrud =1 (2-4)
The Hamiltonian for this problem is
- 2 - -
h =py +pyig/ky +ug) +pxy +pgl=xxg/xy +u) (2-5)
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Maximization of h with respect to vy and Uy subject to (2-4) results in the following steering law

v =/ + D)t

(2-6)
- 2, 2%
and uy = p3/(p] + p3)
Using these values of v, and Uys along with the condition that Pp= - 1 in h, yields
o 2 _ 2 2% _
h = =1+4pxa/xy +px) = Pyxyxa/xy + (] +p3) (2-7)

Simplified Problem -~ Suppose that the initial tangential velocity is zero. Then the optimum solution

evidently is to apply the acceleration along the initial radius vector pointing either toward or away
from the origin in accordance with the well-known solution for the one-dimensional process
d2x2 /clt2 =u, (Bushaw's Problem).

If the initial tangential velocity is suitably small, it is reasonable to use the solution of the one-di-
mensional problem as the basis for an approximate solution to the two~dimensional problem. Thus

we select as the state of the simplified process

X ={xgs %%y, 0} (2-8)
Then 3 ={§°,0,0,x3}

{Note that go is the approximate change in performance due to the simplification).
For the one-dimensional problem the Hamiltonian is

H= Po + P]U + PZXI ' (2-9)

where P= [P., P 0] is the adjoint vector in the simplified problem. The maximum principle

10 Par
applied to (2~9) gives

U =sgn P](t) (2-10)

The adjoint equations for the simplified problem are determined by using (2-9) in the canonical
equations dPt/df = -aH/axt and are



Py =-P, (@2-11)
P, =0
Integrating (2-11) results in
Po = -]
P] = PIO - P20t
Py = Poyys

where PIO and P.. are constants and t is time measured from the (arbitrary) starting instant. The

20
optimum control law for the simplified system (2-10) becomes

U, =sgn (PIO - onf)
{ U, t< Pro/Poy =t

U, t> Plo/on

where U =sgn (PIO/PZO) =9

U = (2-12)

1

Substituting (2-12) into (2+2) with Xq

expressions for x](T) and x2(T) as functions of T, b and the initial conditions. Solving simul-

= 0 and integrating to the terminal time T, results in

taneously for T and ts and utilizing these along with (2-9) results in the following expressions for

the initial adjoint variables in terms of the initial state variables.
P, =U-X,/X2/2-U )i (2-13q)
10 10/ %1072 - V%

Py = u/(x1§/2 - uxzo)” (2-13b)

Since the initial state is arbitrary, dropping the subscript zero in (2-13) results in the general re-
lations for the adjoint variables in terms of the state variables. Substitution of (2-13a) into (2-10)

leads to the well-known control law for the simplified problem.
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If the initial tangential velocity is not absolutely zero, however, this control law is unsatisfactory
for the original problem because no tangential acceleration is ever produced. As a result the
initial angular momentum is conserved, and as the radial distance decreases the tangential velocity
increases until the vehicle either orbits the origin or escapes entirely. Satisfactory performance can

be achieved only by use of a tangential component of acceleration.

Quasi-Optimum Control Law - In the quasi-optimum control law the radial and tangential compo-

nents of the normalized acceleration are given by (2-6), in which approximate values of P and

py are used. These approximations are given by

3
p, =P, + jz my &y 1=1,3 (2-14)

From (2-8) however, £,=£,=0 and £, =x,; hence (2-14) becomes
1 2 3 73

Py = Prtmito tmigts (2-15)

Py m30%0  *33°3 (2-16)

Thus only Mo s Mag . Mg, and maq in the matrix M are needed. These are calculated with

the aid of ( 19). The coefficient matrices H appearing thereon are found by per-

xx 7= Hpp
forming the required partial differentiations on the Hamiltonian for the complete problem, given

by (2-7), and evaluating the result at x = X, i.e., for x, = 0. The results are

3
o o o o [0 o o i
0o 0 0 0 0 0 ©
H = H. =
xXx“jo o o o pP{0 o0 o
o o o0 2P]/x2_ o o o U/PL
0 o o0 o0 7
0 0 0 0
Hep=Hpex “lo 1 o o
_o 0 o0 -x]/XZJ

The result of substituting these matrices into the auxiliary system (20) expressed in component form,

is
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£g =0

E. 15 Y

£,°€,

£3=-(X /X )&y + U/P) g,
$o=0

=¥,

$,=0

¥ = ~@P/X )b + (X /X )by

(2-17a)
(2-17b)
(2-17¢)
(2-17d)
(2-17e)
(2-17f)
(2-17g)

(2-17h)

Note that the equations for ap3 and 53 are uncoupled from the others (which can be integrated by

quadratures). Thus

€o(T) = £,(0) = const.
£,(T) = £,0) = const.

£,N =80T +£,0)
§3M =a®5() +bt)P, ()
ds,o(T) = 4)0(?) = const.

¥ =-9,01 +9,0)
$,(T) = ¥, (t) = const.

(M) = c(t)§5(t) +b(t) 5 )

where T =T-t¢

The above are subject to boundary conditions (25) and (26) which, for this problem, become
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(2-18a)
(2-18b)
(2-18c)
(2-18d)
(2-18e)
(2-18f)
(2-18g)
(2-18h)



£,(T) = -X(T) dT = (sgn P) dT (2-19a)

£,(T) = X, () dT=0 (2-19b)
dg(T) = -Fy(T) dT =0 (2-19¢)
¥5(T) = -P,(M dT =0 (2-19d)
and -P,(M&,(1) = fsgn P ,(T) (2-19€)

From (2-18e) and {2-19c) we obtain ¢0 = 0 and hence m 0. From (2-18h) and

ot~ "j0 "

(2-19d), al)3 (t) is only a function of 53(t) . therefore may = 0 . By symmetry of M, Mgy = My = 0.

Thus the only non-zero component in (2-15) and (2-16) is m Thus (2-15) and (2-16) become

33°
Py = P] (2-20a)

and

Py =m X (2-20b)

Tha remaining coefficient mgg(t) is given by (2-18h) and (2-19d): m33(t) = ¢3(t)/§3(t) = -c(t)/b() .
To obtain c(t) and b(t) , however, the time-varying securu w.dor zjmteam (2-17d) and (2-17h) must
be solved. We were unable to solve this system and accordingly obtained a scalar Riccati equation

for maq through use of (2-20b):

__ 2 -
- dm33/dt = -(2X 1/X2) mos + (U/P‘)m33 + 2|>]/x2 (2-21)

Since this equation is equally intractable, an approximate solution was obtained by assuming

dm33/dt= 0;i.e.,
m, = (PUMX) X = 02 - 2X )] (2-22)
a3 = (U Xy % - 2%,
where P] and U are given by (2-13a) and (2-12), respectively, (with the zero subscript omitted).

The choice of the plus or minus sign of the square root term in (2-22) was resolved by recognizing

that in order to get the proper acceleration direction the sign of the square root term must be negative.

(e.g., for X] =0 and )(2 =1.0, U=-1.0; the negative square root then gives the proper retarding

effect on Xa .) Hence, use of (2-22) with the negative sign in (2-20b) and (2-20a) in (2-6) results

in the following quasi-optimum control law.

oy =P/ B+ [P UA X, ~/BUR) 22y B (2-22)
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v, = (P]U/XZ)(Xl -/2UP2) x3/{|>"]’ + [(qu/xz)(x] -/2u1>2)]2x§}is (2-24)
(The square root term of (2-22) has been eliminated by use of (2-13b)).

Performance with Quasi-Optimum Control Law - The performance of the control system using the

quasi-optimum control law (2-23) and (2-24) was simulated with the aid of a digital computer.

For purposes of comparison, the performance using the control law for the simplified problem (2-12)
was also simulated. Trajectories for three initial conditions are shown in Figures 2-2, 2-3, and 2-4.
The unsatisfactory performance with the controller for the simplified problem is evident. By using

the quasi-optimum controller, however, the rendezvous is achieved for all practical purposes:

the vehicle is steered very close to the target and the velocity is simultaneously reduced very

nearly to zero.

It should be noted that this good performance was achieved even though the initial tangential

velocity was not small, as is clear from the size of the excursion from the initial radius vector.
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2.3 FLEXIBLE BOOSTER ATTITUDE CONTROL

The problem of controlling the attitude of a flexible booster was chosen as another illustration of
the quasi-optimum control technique. For simplicity we have selected a model with only a single
bending mode present and with negligible actuator dynamics but the technique can readily be
extended to include actuator dynamics and more bending modes. The basic assumption for the
simplified problem is that the flexible booster can be represented as a rigid body. A first-order

correction is then applied to account for the flexibility.

Exact Problem - The dynamic model for the exact problem is taken to be two rigid homogeneous
sections, each having its own physical and aerodynamic characteristics linked by a torsional spring.

(See Figure 3-1a).

The linearized equations of motion for section 1 of the dynamic model are given by

mV, =T-h+f6, -D -L6, @-0

nwhy=T®I-6)-hel-f+L]-Dﬁq (3-2)

18 =Togy - flt-g)+C (6,-6)+(L;~Dyy;+Dy6))5, (3-3)
and for section 2 are given by

myv, =h-f8,-D,-L86, (3-4)

n5%y=m]+f+5-oﬂb (3-5)

J]é2 =-fgy +(hg, - C )0, -6 ) + (L, -DyB,)S, (3-6)

where the above parameters are illustrated in the free body diagram of the dynamic model

(See Figure 3-1b). Due to the interconnection there are two position constraints on the booster
XPtLym915x79,

and y]+(LI—g])6]=y2-929

inthe x any y directions respectively.
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Differentiating the above two equations twice with respect to time yields the following two

kinematic constraints on the accelerations:

Vi Vax @-7)
Vay~ V1, = & =98] +9,8) (3-8)
Using (3-1) and (3-4) in (3-7) and solving for h yields
h=f@, +mm [T/m = D) +L,0)/m + (D, +L0,)/m]/(m,+m,) (3-9)
Using (3-2), (3-5) and (3-5) in (3-8) and solving for f yields
F=mml=T6/m + £ /my = f /my* &) =98, +g8,1/m) +m) (3-10)
where £, =L, =D,y +D,6, 1=1,2 @3-11)

Utilizing (3-9) and (3-10) in (3-3) and (3-6) and solving simultaneously for '61 and '62 results in
8,=[1/(AB - A1 {16 [B(m 97 +myty) - Cmg | /M +£. [Cmg, /M +B[S, - m,(t,-g,)/MI]
+ %2[Bm'(L] - g])/M - C[SZ + m]gz/M]] | (3-12)

+(8, - 8)[C (B +C) -g,C(Tm, - Dym, + D;m))/MI]

and
6, = [1/A8 - A1 (16 [Amyg, = Clmg, +mt DI/M +£ (- Amg /M - CIS, = m &, - g,)/M]]

+E ol Cmy @) = g)/M + AL, + mg,/MI] (3-13)

+,-8)I C, (A +C) +Agy(Tm, - Dym, + Dz'“l)/M”

where
2
A=dytmm ity -g)"/M
B=J, +m,m 2M
dy + mymgo/
C= mlmz(Ll -gl)gz/M
and M=m,+m

1 2
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- Utilizing the following standard aerodynamic terminology for the terms in fat given in (3-11):

Ly = Clg B'a = k@

D= CDqS
where q =p\V2/2

a=8 -y

y = vY/V

|vi = constant

results in

fr =5 =y /Y v=1.2

where .
e =957 €y * i)

(3-14)

It is desirable to write the equations of motion in a form that will facilitate the extraction of the

simplified problem from the exact problem. For this purpose, we define a new set of variables:
8, =lA+C)e, + (B +C)8, /(A +B +2C)
®=1(6,-8)
oy = [m]vly + Yy ” mlmz(’c] gt 92)(52 - él)/M] /M

In terms of these variables the equations of motion cun be written In the vector matrix form

x =Ax +8u
where - - ~ ]
Vav Y
Yav 0
x= av B = "C
]
av
@ q
%) | 0]

(3-15)

(3-16)
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- d, o o0 h -t n
] 0 0
';&/V 0 K c
A= 0 0 1 0 0 0
-w/V 0 0 w d w2
| o o o0 0 1o

The non-zero terms in A and B are defined by:
ke = “fs /. JTOT
ke = Tg/JTOT
d,= #,/MV
h= (T + “L)/M
a; =T/M

b=mmalty =9, +8) b S/M V1o
c= (A + S, - B+ Qe Sy Aoy
+g,(Tm, = Dym,+ Dym )/MIp oy
L=mm @ -9+ gz)n,/Mav
n=[A+C) B2~ 8 "'C)(“L] +T)]/MJTOT
W b gm0 /M 5,8 + O + iyl myty = )y or/M

+3,(A + C)I}/(AB - A
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do ™™gty ~ 91 * 9 lHp M8 1 or/M +5,6 + O]
= tpplm m Ly =9 )5 /M + 5,0 + Ol /MBV(AB - CP)
-wz = {yn(B + C)[mZQZJTOT/M +§] (B + Q)] /JTOT

+ ufz(A +C)[- m](L] -9 ])JTOT/M +§2(A +C)} /JTOT

" CalTOT +4,(A +C)Tm, -~ Dy, + D,m )/M} /(AB - C)

q=Tim,g,(A +C) - (m g, +m L, )B + Ol /M(AB - C*)

where

51=5)"mylty gy +g, /M

S,=5,tmlty gy +g,)/M

JTOT= A+B+2C

g=Img, +my(t, +g,)l/M

S= lugySy + megSol by
Be= By THe
BTt

The block diagram for (3-16) is shown in Figure 3-2. The heavy lines denote the rigid-body
dynamics; the contribution to the motion due to the flexibility is indicated by the lighter-weight

lines.
The controller to be designed will minimize the following performance index
T
_ _ 2 2 2 -
Vo = xg0 =2, /2 + (%72 [ M @17

where T = terminal time
K2 = weighting factor

Mov = total moment about the mean center of gravity
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The performance is thus measured by the square of the drift at the terminal time plus a positive
constant timesthe integral of the bending moment squared. This performance index chosen is
essentially a penalty function approximation to minimizing the square of the terminal drift subject to
an upper limit on the square of the average moment. The penalty function method has previously
been effectively used to handle inequality constraints [ 10] . From a practical standpoint, use of
(3~17) will result in a linear controller in which the gain programs can be computed with little
difficulty.

Writing (3-17) in vector-matrix notation facilitates subsequent computations. In this notation (3-17)

becomes

T
xo(M = % [x" (MRx(T) + ,( & Fx +x'L"u +u'lx + v’ Gu) dr} (3-18)
t
where _ —
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
R=10 o o o o o
0 0 0 0 0 0
0 0 0 0 0 0
- p—
u‘!/\/2 0 0 - pa/\/ -b/V - c/:/—I
0 0 0 0
F= “akZ 0 0 0 0
- pa/V 0 H, b c
b 00 b B’ b/,
-c/V 0 0 c l::c/yu c2
L=uk ["u /V', 0 ) 0 ’ “a ’ b ’ C]

and G = u2k2



The exact Homiltonian is

h= (po/2){x’[.A'R +RA+Fl x +x"(RB +L Ju +u"(B'R + L)x +u’Gu} +p'(Ax +Bu) (3-19)
The Maximum Principle yields
0=-G (@R +1)x +B"p/pyl (3-20)
Utilizing (3-20) in (3-19) results in
h= (py/2x’ [(A’ = L'G "R +R(A -G ') -R8G 'R - L'G™'L +Fl x

- (V2pP'BG 87p+p'[A - BGT'(B'R + L) x

The corresponding canonical equations are given by

x | {a-sc'@R+D) 8G '8’ x
- (3-21)
b Q SlA -Re+LNG 871 | | b
where Q= (A’ - LG"ﬁ')R +R(A -G L) - RpG"B'R -G L +F
Since x(T) is free, the boundary conditions are
p(T)=0
(3-22)
except po(T) = -1
The submatrices of (3-21) are given by
SErarp A0 0 hta /b)) b/ - t) (age/k +n
]
1 0 0 : 0 0
O 0 0 0 : 0 0
A-BG (BR+L)= -__.-_0----—9-_]--_--9-_—-:--- o o (3-23)
(-w+ udq/uc)/v 0 0 (w-paM) ! (d-bak) (W -cqf)
0 0 0 0 : | 0
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a2 T S

and

8G 8" =

2 2
(o.l,/“ck) 0 - uT/u k 0
0 0 0 0
ekl 0 142 0
0 0 V] 0
_____ P T
-ch/p:k 0 q/y,ck 0
0 0 0 0
— |
0 -1 0 0 : 0
~1 0 0 : 0
0 0 : 0
Q= 1o o o !o
______________ R
0 0 0 : 0
0 : 0

The above matrices have been partitioned so that the upper left~hand

from the rigid-body dynamics.

22 N

- aTq/uck 0

0 0

2

A/ k 0
0 0| @24

(h k) 0

0 0
(3-25)

4 x 4 matrix is that resulting

For subsequent use, it is desirable to write the p equations of (3-21) in component form:

Py = “Pp*y
p3=-p4

arp £ q
. To oo
Pa=Pyh+ m )~ pg (w m )

c
Ps =P -ab/u) - psld, - ba/p) - pg

. 2
P =Pyl +°T°/”c) - pglw” - cq/uc)

(3-26a)

o) (3-26b)

(3-26¢)
(3-26d)

(3-26e)

(3-26f)

(3-26g)
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Simplified Problem - Letting w2 = @ in (3-16) and further requiring that the product (‘uzx6

remain finite during the transition requires that Xg and hence X approach zero. Inspection of
(3-26g) with the above reasoning results in the conclusion that Ps tends to zero. Hence the
simplified system is of fourth order. In accordance with the theory developed, the state of the

complete process is represented by

x=X+¢
where
1 [
r_v 0T
av
Yav 0
8 0 ]
av
X=1g £€=1o
av
®
L0 K

Thus (3-16) is reduced to the simplified equations of motion by taking only the first four elements

of the exact state vector:

(%, ] |4, o 0 h | _xlj ?u.r—

>'(2 1 0 0 0 X, 0 |
).(3 e “oz/v 0 0 Hoy x3 ! e ° -2

_)‘(4_ i 0 0 1 0 1 _x4_ _o_

The block diagram for the simplified system is obtained from Figure 3-2 by removing the portion shown
by the light-weight lines.

The optimum control law (3-20) is written as

u=U+ <1r>5/(uc'<)2 = bxg+cx)/u (3-28)

where U is the optimum control law for the simplified process, which, from (3-20), is given by

m X
- o (1 1 - -
U= & (=X + 55 G Py -arP) (3-29
(< “ck
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The exact canonical equations, given by (3-21), include those of the simplified problem. The

simplified canonical equations are given by

X1 "n Hiz| |X
= (3-30)
P H2] H22 P

where H”, H]2 and H2] are given by the partitioned 4 x 4 elements of (3-23), (3-24) and

(3-25) respectively and H'22 =-H n- By assuming o time-invariant model, the coefficients of

the H‘L,j in (3-30) are constant and the solution to (3-30) is obtained by use of the Laplace transform.
In particular

-1
.,E] sI-Hpy "Ry
&) =

-H sI -H

12 22)

Hence the solution to (3-30) for [X(T), P(T)] in terms of a starting state [X(t), P(t)] canbe

written as follows:

X(T) =@, (T -)X(1) + & (T - ) P(t)

(3-31)
P(T) = &, (T =X () + &@,,(T - 1)P(1)
where
°]](T"f) °]2(T-t,
T -t) =
@) (T -1 @ - 1)
is the "fundamental matrix {11} corresponding to (3-30).  Inasmuch as there are no terminal
constraints on the state vector, the costate vector is identically zero (3-22). Hence, it follows
from (3-31) that
P(t) = M(7)X(t) (3-32)
-1
= 3"33
where M(r) "1’22 (r )@2]("') (3-33)

and T=T-t (timetogo)

Performing the operations indicated in (3-33) results in

69



B 6 Gl
(]_ee)(]_ee) l_ee A(]-e )f] X(] e )f2
2 2
4 ¢ 4
6
_ 8 re f
l-e A_ee _ c1 _keefz
"t
6 (C] 26 26
)\(l-e)fl _)\e f] _)\ef? -)teflfz
p)
4 ¢ 9
G 26
A(1-e )I"2 -)\eef i ATe flfz -)\2 6f2
2 C €
where 8 =1 (dimensionless time-to-go)
r=d Ho1
=d.+
1 ch
2
_6" _ _ -6
f]—-? 6+1-e
f=0 - 146"
pa
A=]—2[h+ o T]
e He
and
5 4 3 3
32_6,.2,0 ] ] ) 2 2 3 32
ALK =e X (—25--Z-+-§—)-Mn 'X)('—3—'9 )=t-2)"@-5)+L k7]
e-e 2 2
+=—0 -2+ -220 -)) - re7]
where e S {1
B Mg

Substitution of (3-34) into (3-32) and the result into (3-29) gives the following expression for the

control law for the rigid-body
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U=[.___p°‘ +r(——]'e—e)] X. +TX +rﬁlx +[-u_°‘+rxf]x (3-35)
TAY 4 ! 2 "¢ '3 M 274
a8, . (-éb
where IT= ZI:Xe f.l OTT-}

A study was undertaken using the equations of motion (3-27) and the associated optimum control law
(3-35) in order to determine acceptable values of the parameter K which weights the moment in-
tegral to the drift in the performance index. The vehicle parameters which were used in this in-
vestigation are given in Table 3-1. The result was that for K lying between one and two, both

the terminal drift and the maximum inflight moment were acceptable. For K near zero, the terminal
drift was least, but the maximum inflight moment was unacceptably large; while for K of five, the

terminal drift diverged.

Quasi-Optimum Controller - The quasi-optimum control law is now constructed from (3-28). It is

noted that, since the exact costate vector has six components and the simplified problem was of
fourth order, the m_. and m terms of the gain matrix M(T) , now 6 x 6, must be found.

51 61
Since Pg was previously shown to be zero in the simplified state, m L= 0. Hence, from (3-26f)

5
with Ps = 0

Po= @ -ab/u )P, (3-36)

where P] is known from (3-32); L) is still undetermined but is not required in the quasi-optimum

control law since Pg does not appear. The full gain matrix M(T) can thus be written as

oy ™2 ™3 ™y 0 my,@-ab/)
™12 M22 ™3 M24 0 my,@-ab/)
™13 m)3 m33 my O mgt-abh)) a7
M(r) = ™4 Mo4 ™34 M44 0 my @ -arb/)
0 0 0 0 0 0
M@ -abA) mp-ab) mglt-abA) om0 -apb/i) 0 66 _

where the m‘Lj (t=1,2,3, 4) are given in (3-34).
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Thus, substituting (3-37) into (3-28), the quasi-optimum control law is

b
b c iy % -8
v=lU- = x, +[-=—4——" (¢ -—)(1-e ")]x (3-38)
6
He He kzp,ccz ke 3

where U is given in (3-35).

To verify the acceptability of (3-38), a simulation of the motion of the flexible vehicle (3-16) using
both the simplified control law (3-35) and the quasi-optimum control law (3-38), with K=1, was
performed with the aid of an 1BM 7040 digital computer.

The final results for w== (rigid body), w=20 and w= 10 are shown in Figures 3-3 through
3-6. 1t is interesting to note the behavior of the control signal (Figure 3-5) with regard to the
angle of flexure (Figure 3-6). The quasi-optimum control law seems to be tuned to variations in
the angle of flexure, and almost 180 degrees out of phase with it. Note further that the simplified
control law when used with the flexible vehicle does a better job as w grows. This is to be ex-
pected inasmuch as it is exact at w== . As the system becomes more and more flexible (i.e., as
w~ 0), the performance using the quasi-optimum control law deteriorates, again as expected:
the quasi-optimum control law is only a first order correction to that for a rigid vehicle. For

w =15, it wasfound that the system behavior was not satisfactory; all quantities ultimately diverged.

The vehicle considered here was aerodynamically unstable (center of pressure was forward of the
center of gravity). It is quite possible that with a more aerodynamically stable vehicle w could

be made closer to zero and still permit use of the quasi-optimum control law.
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TABLE 3-1 - VEHICLE PARAMETERS IN SIMULATION

P

air
5

52

T (terminal time)

Co

35slugs
15 slugs

3800 Ib
600 ft/sec
2.66 rad.’!

2.66 rad.!

.06
.06

3.125 ft
6.25 ft

1.67 fr

0.833 ft

0.667 ft

114 slug-fr2
48.8 slug-ff2
00237 slugs/f>

1.4 ff2

1.4 ft2
10

5470 Ib~ft  (w = 10)
15790 Ib~ft  (w= 20)
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2.4 TIME-OPTIMUM 3-AXIS ATTITUDE CONTROL OF A SPACE VEHICLE

Another problem which was begun was that of controlling the attitude of a space vehicle in which the

gyroscopic coupling torques are small but not negligible.
Exact Problem = The equations governing the motion of the vehicle are taken as

det/df=w 1,/,k=1,2,3

1
(4-)
dwi/df = [(Ij -Ik)‘ﬁ‘wk +C‘Lf7',]/IL
where
9i=xt=ar\gularpositim t1=1,2,3
Wy =Xq.y = angular velocity 1=1,2,3
I ; = moment of inertial about the principal axis
¢; = moment arm of jet control
ft = thrust of jet control
The thrusts are assumed to be bounded in amplitude:
£, 01 = M, t=1,2,3 (4-2)

The cross-axis inertia ratios (Ij -Ik)/Ii, are assumed to be small but nonzero, and are represented

by additional state variables
Xg41 =aj -Ik)/It t=1,2,3 (4-3)

Introduction of time as the performance index which is to be minimized produces an additional state

variable xo(t) =t. Hence the state equations can be written as

78




Xq =Xg
Xy = %15ty )
Xg = xg*6%4 + k2u2(t)

kg = xgx g5 +kaug)

)<7=x8 x9=0

where
k'L =c, M'I,/I i
o @15 1
The Hamiltonian for the exact system is
h = Po * P1*4 *Ps *P3Xe Y PT 5% * p4u]l<]

+paxgrgx, + Py * PeXgkgXs +Pgiaks

where
and By = “P1 ~ P5¥g*s T Pg*"s

P5 = Py " Pg76 " P6 94

Pe = P3~ Pg7*5 " P5'g'a

Pz = "Pg5%s
Pa = 'Psxéx 4
Pg = Pg*4*s

(4-4)

(4-5)

(4-6)

(4-7)
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The Maximum Principle yields the foliowing control law
vy =sgn (k]p4)
v, =sgn (k2p5) (4-8)
Uy = sgn (5P

Simplified Problem - The simplified system is defined by

=0 (4-9)

Thus, for the simplified system the three axes are uncoupled, and from the solution to the well-known

Bushaw problem, we have the solution to the simplified problem

Ul = sgn k](- P]o(‘r -1) + P40)
U2 = sgn kz(- 50(7 -t)+ P50 ) (4-10)
Uy =sgn k3(- P30(1’ -t)+ PbO)

where Pi, , 1=1,...,6, are the adjoint variables for the simplified system.

Quasi-Optimum Control Law = The quasi-optimum control law is given by

vy =sgn [k (Py+tm x, +mygxg +m oxoll
u, =sgn [k2(P5 + MgXs + msgXg + m59x9)] (4.11)

ug =san k(P +meox; +megxg ¥ mogxgll

where P, P_, P, are adjoint variables of the simplified system defined above, and the m are

4’ "5 6 it/
components of the gain matrix M which is obtained by finding the fundamental matrix for the

auxiliary system (20 ) the coefficient matrices of which are given by
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(4-12)

0

XSX6 0

0

)(6)(4 0

0
0

K

(4-13)

-
X
i
A
T2}
x X4
Pco D..lo
X6
o
PS
X6
(=]
PA.
[« o
[=] (=]
o o
o (=]
o (=]
[=] o
(=] (o]

P4X5 P5X5 0

0

0

0

P4X6 P4X5 0

0

0

P5X4 0

P5X6 0

©
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0 0 0 O 0 0 0 o o O
o 0 0 0 0 0 0 o 0 0
0O 0 0 0 0 0 0 0o 0 O
O 0 0 0 0 0 0 0o 0 O
0 0 0 0 2pkP) 0 0 0o 0 O
_ 174
Hpp = (4-15)
0
o 0 0 0 0 26(,P) 0 0 o0
O 0 0 0 0 0 Aplf) O O O
0 0 0 0 0
0 0 0 0
0 0 0 0 0 0
In component form the auxiliary equations are

£p=0 ¥y =0

i =¢, by =0

€25 €5 ¥,=0

€37 & ¥3=0

£4= XsXghy * 2004 Pe, by =m0~ PXebg m g Xsbo “-16)

£5= XX bg T 200N 5 s = ¥y = By XeEy ~ P X

£ = XgXsbo * ZadlgR Yo =93~ X58; - PsX Eg

£,=0 by = XX, = P Xk - P X E

tg 70 Vg = XX@s ™ FXgbs = F5X486

S9=0 bo = XXsbe ~ X5ty e X4ts

These equations can be integrated by using the same procedure as used in the quasi-optimum solution

to the Bushaw problem. Assume that the solution to the simplified problem is

U t<t

u, = \ ¢ st i=1,2,3 (4-17)
-U, t>t

v st
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and that by <to<ta,. Then the fundamental matrix ®(T, 0) for (4-16) is
a + + - - 4+ + - - 4+ + - - _
T, 0) =8, '53)6('s3' t53)‘5053' t52)‘1’“52' t52)‘%‘52’ i.s])é(fsl' tsl)‘p(fsl’ 0) (4-18)
where
0« fs|< t52< ts3<T .

The matrices @(t:i’ ' t:i) contain terms resulting from the impulses in HPP . Using the method
of the first example, it is found that

+ - + -
Byl s tgy) = @0, 1) =T
(4-19)
+ - i
¢2](fsi4,tsfz)-0' v ]l 213

and that the elements of 6]2({1, , f;t) are all zero except for the element inthe (4+1, 4+1)
position which is 2Ut/P‘L' Furthermore, it can be shown that, if 7 =1t - t:i, ,1=0,1,2,3,

+ -
tsts ts *5(1,+I) R ts4-T R fso-o , then
QH 012
&, i) = (4-20)
st ¢ 6
21 22
where ~ —
1 0 0 0 0 0 0 0 0
0 ] 0 ¢]4 0 0 d)‘? 0 0
0 0 1 0 0 025 0 0 %8 0
0 0 0 1 0 0 ¢36 0 0 ¢39
0 0 0 0 1 0 0 d>47 0 0
d = (4-21)
H 6 0 0 0 0 1 0 0 @50 '
0 0 0 0 0 0 1 0 0 ¢69
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
o o 0o o 0 0 O o 1|
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(0 0o o 0o o 0 o0 0 O 0 |
0o 0 0 0 o0 O0 o0 o0 0 o
o 0 0 0 o O O ©O0 0 0
o 0o 0 0 o0 0 0 O 0 0
on o o o o o o o o 0% 8 (29
57 59
0 0 0 0 0 0 0 & &5 0
0 0 0 0 0 @ &, 0 @ O
0 0 0 0 @, 0 &, &, 0 Oy
[0 0 0 0 @y, & 0 & by 0 |
R 0 0o o0 0 0o 0 0 0 ]
0 1 0 0o 0 0 O0 0 O
o o 1 0 0 o0 o0 ©0 0 O
5, - o o o0 1 ©0 o0 O0 o0 O0 O (4-24)
© 6,0 0 1 0 0 0 0 O
o 0o 6,0 0 1 0 0 0 0
©o 0 0 @, 0 0 1 0 0 O
0 @®,0 0 &, 0 0 1 0 0
0 0 ®, 0 0 @& 0 0 1 0
|0 0 0 ey 0 0 o 0 0 1 |

where, if X‘L and P'L denote the walue of the state and adjoint variables at the beginning of the
interval and U, denotes the value of the control (either positive or negative according to (4-17)),

then

¢]4-'r
&= o kok U U+ Locku, + x kU3 + Lx x 2
17- 12 “2°37°273 6622 3‘33 7 XsX¢
¢25—'r
o= mkkUUs4+ Lok U X kU + Exox
28~ T2°1°3°1°3 gk Uy + XU & 5 X X

2




=T
= 4 1 3.1 2
®39= 7 kiU Vgt + G gkgUp + X jUyhr™ + 37 X
1 3 1 2
© 7= FhakaUgUam™ + 3 (KgkolUy + X kU™ + X X
] 3 1 2
®sg= FhikaUpUam ™ + 3 (Xgk U + X kaUghr = + X X7
®,o= Tk UUTI+ L kU + Xk UL+ X Xor
69 FRRUIUST + g kU, + X kU, £S5
: ® .= dkUPrd- L-X P 4k UPIE-PXT
48"~ FkaUsPom™ - 3 (= XgPy +kyU P " - PX
y 1 3 2
| ® 19 FkQUaPsT" = (- X Ptk U P % - P Xr
|
| =
| & =T
| ® = S UPTS - X=X P +kUPIZ-PXT
577 373731 2' 761 73734 476
5 ® 0= akUPTS-Lxp +kupyZ-pxr
| 59 3T - g (=X Py tk U R 6 X4
=T
" o =lkUP'r3--]-(-XP+kUP)1-2-PX1'
67 372721 2 51 "2°2'4 45
| _1 3_1,. 2
: ¢68' 3k‘U]P21' 2( X4P2+k]U]P5)'r P5X4'r
| ®e3= T
&, = sk UP S - 2 UP - P X2 =P X 1
75° 337317 T 7%3Y374 7 1% 46
& = 2k U PTo = Ak UP, - P X2 - P X.r
76 = 3KUP T - gk U P - PiXg Pa¥




1,2 ) 1.6
® g = gk [Pk Uy - PkUol g7
2,1 ! 1,2
+ kg X,Py = 3 X5P) - gkak,U

12 5 5 15
1% * 2k kWU - U gUsX Py + gk Uik U P Xl 5 7
5

1.2 i
+ [gky(®gPg = PuX ) + kqUgd 5 X, P X = ZX X Py + PiX X,]

! 2 1 2 5 3 1 4
= gk UaPoX + gk U PXg = FkqkaU UgP X *+ gkokaUpUaP X ] 27
| 2 3 2 1 13
* =gk U P Xt 2 kqUgXg(= PpX g+ PoXg) +k U X Pyt XZ(PIX4 %R 37
X

6 2
HPXy = PR T

1,2 i 1 6
®59 =gk U P -kUsP) z 7

2,1 1 5 12 1 .2 s ]

*+ k(g PX, = 3BX) + g kUikUy P X + 2igUo R = 3k UGRy - aigUXshl 57
12 5 5

* gk (KB = %P + I‘2”2(%'1’(4)(5 - TX%KeR) - gk UL EXS

3 ! 2 1 2.1 4
3 kokaUaUgX oPy + 5k U P X - 5kaUaX ] 27

5

3 2 1 2 1.2 2.1 3
* 5k (XX = FX,Xe) +IgUiRX g = gk U PyXs = 3 XgXo Py + X XsPyl 37

6F3 t X%sh
21'2

tI= Py = XeFelXs

R 4 1 3.1 2
©1 = ghokaUUs T+ 3 (XkUy + XkaU)T™ + 5X X7
G == Sk kUU.7S - S0k UL+ X kU)TE =X X, T
74~ " FhokaUpUaT ™ - 5 (X koUy + X ckaUy 576
O = tkUPorS = Sk UP - PX )T PX, T
84 3737327 T72%3Y3'5° 2% 576

B 3 1 2
Gge = KU P T~ gk U Py - PIX )T - PX T
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¢

=12 - T_
®go = 3k kU, P, = kaUsPl) %

(<

®

d

¢

87

82

85

94

95

6
2 T
kytkoUpPy = kU P

]
3

5 5 2,1 1 T S T S
+ = Sk iU P + ZiokaUpURX, + g (5 PX, - 3 PiXy) - glolkafs + 7k UikgP 5

3 5 1 2 1 2
+ [kaUa(5 XX Py = T PX Xy + 3 kUoPXg = 75U PXg

4
I
4

3 5 12
+ 5k kU UsP X, = ZhokaUpUsPX + 5k (P X o = PoX ]

3 1,2 2 xgé Bl 1.3

* “‘3”3(% P XX = 5X5PsXg) = kU X Ps t kiU P X + By 2’%”1"4‘ 37
22

*[PXy - PXIX 5

6

2.1 ) 5 5 1,2 1,2 1.5
+ [k RXs = 3BXg) = ghigUBXy + FhiigUihBX, - 3KigUpPs + gk ksl 57
F kU CPX X = 2P X X )+ 2k kU ULPX, ~ 2k kU U P
U (5PX X5 = ZPaX X )+ Tk kgUjUgPX o =k ko UsPsXy
1.2 1 2 1 2.1 4
7 k] (PeXg = PoXg) =5kgUsPaX), + 5k Uy P Xl 27
3
3 1 2 2 ! P
+ [k U X X P = X X P ) = ok UpX P +kgUX B * P2’34’(5 3 Xixapal 3
+[P.X, -P 1x21-2—
66 = P5X51 %472

=lk kU U'r4+-]-

3.1 2
i<1kqU Y5 3(XkU+XI<U)'r+§-X4X6'r

6171 7433

= - qk kU U T2 - 2 (X kU FXKUNTZ =X X, T

gkikaU Y ek Uq F X Y3 s
1 3 1 i 2
= gk U, Pat ™ - 5koUyPy = PaX T = PX ST
B 31 i 2
= 2k U P73 - 2 U P = PaX )T = P X, T
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1.2 ) 1.6
gy = gkolkqUsPy =k U P g7
; 20y p - Lpxys 12wk MupiLle®
+ [= 2k U U P X + I (5% Py = 3P XY+ ZlokgUpURX By = ko kgl Ry + okokqUy Rl 5 7
U (3X X, P, = 2P X X ) = 2k kU UPX, + ok kU U P X
Up(GX X Py = ZP X X ) = FhokaUgUsPX s + 5k kU UpP X s
4
] 2 1 2 1.2 .
- 5k U X Py + gkaUgX Py + k(X Py = X Pl —
3 2l 1 1 )§ 13
+ 11U (BX X5 = XP) - phUpGR, = X, + kyUPGE, = 5k g UGyl 37

2 1'2
*IPXy = PeXgl X5 =7

1,2 1 6
®og = 3k (kgUsPy - kUP)g T

5 2,1 ! 5 1,2 1,2 1.5
+ [ ZhloULPX, + K (5 XBy = 3BX) + kiU BX, = 5igkoUPe + kikaUaPel 57
5 3 5 ] 2
+ [k Uy (= X P X5+ 5PX X = Tk kU UgPX = 5koUaPoXy
2
B U UP X, - hup e S e - x Pl Lrt
Sk kgU UpP Xy = gkgUaPaX, + 5 (P X = X Pl 7

3
3 1 | r
* (U P, - X8 - Fheh + iR - 3X0E, - XXy
2

27
+{PXg = PX X, —5

1 4 1 3 1 2
¢93—zk]k2U]U2-r +§-(I<IU]X5+I<2U2X4)1- +-2-x4X5'r

__ 3_1 2 _
o, = gkkUU-r 2(X§<]U]+X4l<2U2)‘r X4X51'

96 1727172
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« The matrix @12('[ ,0) , the (12) - component of &(T, 0) given in (4-18) has been calculated. lts

elements &\)ij are all zero except
U
A 1
®27 2% alp t1g+ )
A U]
®5=2 i to¥ta T
A~ U2
¢33 =-2 E(T +ts3)(tsl + t52)
)
A 2
¢36 -—2—|—,-(t53+T)
2
U
& =_9_3
¢44 =-2 P3 T(ts] +t52+ts3)
U
A 3
&, =2T =—
47 P3
U,
®52”
. Y,
¢55 =2 —P—]
o, = 2 U3 + +
¢63 - F:;(tsl t52 ts3)
U
A 3
o, =2 —
66 P3

The other components of &(T, 0) can be found similarly.
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2.5 MINIMUM LATERAL MISS-DISTANCE REENTRY

The problem of minimizing the lateral miss-distance at impact of a maneuverable re~entry vehicle is
another problem which was considered. The problem was formulated in two dimensions over a flat

earth in a uniform gravitational field.

Exact Problem - The relevent equations of motion are
v, © -CdSp va - CLSp Vvy

vy = CLSvax - CdSvay -g

(5-1)
X =v
x
—_
Y Yy
where V= (v2 + vz)é
x Yy
x,y = coordinates of the vehicle, y being the altitude
Y vy = components of velocity
CL = |ift coefficient
Cd = drag coefficient
S =% (reference area/mass)
p = density of the atmosphere
g = gravitational acceleration
The control variable was chosen as the lift coefficient C{’ which was assumed to be bounded in
magnitude, hence
u=C, |CL|S n (5-2)

The drag coefficient Cd was assumed to vary as Cd =c+ ka, where ¢ and k are constants.

The density was assumed to vary exponentially

P =pg e-ﬁy (5-3)

where Py and 8 are constants. Hence, the problem reduces to finding a feedback controf u
such that X2(T) is a minimum when y(T) =0, where T is the terminal time. The variables

Vx(T)' vy(T), x(T) and T are treated as free variables.
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"By defining the state variables

2
xo=§x P X X, Xy =Y, Xa= Vo, x4=vy, x5=SpV, x6=k (5-4)

the equations of motion can be rewritten as

0~ *1"3

x| =%

)'(2 =x,

%y = e +x g0 xaxs = o (5-5)

. _ 2
X, = UX, X (c+x6u)x4x5 g

Forming the exact Hamiltonian we have

2 2
h = poxyxg + g + Pyxy + Paxg [ e +xgu )y = ux ] +pgxs [uxg - (e +xgu)xy = S

> (59
2 g
-pgeslle txgxg * (£7 4 )]
Applying the Maximum Principle yields either
PaX , = P X
u=- —a]_' [P3X4 + p4x3 +p ] (5'7)
6 LP3X3 7 Py " Ps¥s
2 PyXn = PoX
when % >0 ond |24 ?P = 3+4 s ‘< n (5-8)
v |2:6 (P33 *Pg<4 ¥ P5¥s5
or u = = sgn [x 5(p 43~ Py 4)] (5-9

when either of the conditions in (5-8) are violated. It is convenient to define the switching function

A= XS(P4X3 - P3X4)

The value of the control u is assumed to be sufficiently large so that only solutions on the boundary

. (i.e., of the form (5-9)) will be considered.
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Simplified Problem - For the simplified system it is assumed that the coefficient k is zero, and that

the term, Sp V is constant, and normalized at unity, i.e.,

"5 (5-10)
g = 0
The state equations for the simplified system are then
Xg = XX,
X, =X,
)'(2 - X4 (5-11)
)’(3 = -cX3 - UX4
).(4 =UX3 -cX4-g

where at the terminal time T
X2(T)= 0
The Hamiltonian for this system is
H = Pox]x3 + Plx3 + P2X4 + P3(- <:)(3 -UX4) + P4Nx3 - cx4 -g) (5-12)

The adjoint variables Pt are given by

Py =0
Py = -PyX,
152 =0 (5-13)
|53 = =X Py = P +cPy - UP,
|54 = -P, + UP, +cP,
with boundary conditions

Py = -1

Py(T) = Py(T) = P,M) =0

P =P,
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" The optimum control for the simplified system is

U = -nsgn (P3X4 - P4X3) (5-14)

where the switching function A is defined by

A= P3X4 - P4X3 (5-15)

Defining s=7 -t where t is the current time, and T is the independent time variable, and

o = —92
2 2
c +17

As cx3(r) +nX 4(t)
= ey

°2+‘n
A
X0 - X0 +o
B=——
c +7
H=tn

The solution of (5-11) in any subinterval fr , t] in which U may be taken as constant is given by
X3(1') =e -cs{{Xa(t) +af] cos s - [X4(t) -ac] sinPsl - Ho

X T)=e TSSIXL () +aff] sinfs + [ X, () - @clcos fs} +ca
4 3 4 (5-16)

X](f)=e " [- Acos ns +BsinTs] - Fas -A+Xl(f)
X2(1')=e -cs[Asin f)s +B cos 5] +cos +B + Xz(f)

Consequently, in any sub-interval in which U is constant,the solution is only a function of the
state at the beginning of the interval and the length of the interval. At the terminal time, the states
X](T), X2(T), X3(T), X4(l') depend only on the initial conditions X](t) , X2(t), X3(t), X4(t),

and the number and duration of switching intervals; hence there exists a transformation f such that

XO=EXO, 0, Gy te, T =17

where tt is the 1th switching time. The solution of the adjoint in a sub-interval [t,T] in which

U is constant is given by
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%m=—l

P () =[X,() - X, ()] +Pr) (5-18)
Pz(t) = .P.2 = constant

Py =e < {(P,fr) - Alr) cos Bs + (P,(r) - B{r) sinfis} +A)

P,0)= e {(= Pylr) + AGr)) sin s + (P,(r) - B(r)) cos s} +B(r)

where s=t-T

c(X,fr) - P,r)) -,

Ar) =
c2“72
X ) - P () +cP
B(r) = 1 2] 2
c t7
n=tn

At any time t, the adjoint P(t) is determined by the terminal time T, the i switching times
tl; between t and T and the value of the adjoint 52 . Hence, it is possible to define a

transformation g such that

p@) = o (X(T), ts], ff, f's‘, T (5-19)

Substituting (5-17) in (5-18) gives the transformation
PE) = GIX(), 1, ¢, e 45, T) (5-20)

A possible algorithm for determining P(t) given X(t) would involve the following steps:

1. Assume that between t and T there are no switching times.
Compute T from X2(T)=O, and compute X(T) from (5-17) and 52
Compute P(t) from (5-18).

Compute A(r) from (5-15). If A(T)# 0 for t< 1 < T, then P(t) is the required solution.

from HX, P, T)=0.

HOWON
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5. If the switching function A(T) passes through zero, then determine those times
t it=1,..., k at which A(TL) =0 and repeat steps 2 and 3 with these values as
switching times.

6. Compute the times then

k!
P{t) is the required solution.

for which A(Tz",) =0. If these times Ti’, are the same as T

7. If the times Ti: are different from T then repeat steps 2, 3, and 6 using 'r_i in place of T -

The procedure works if the T; converge to the Ty -

Quasi-Optimum Control Law -~ The quasi-optimum controller is given by

6
U= - sgn {xs(x:;f’4 - x4%) + xsg' [LZ=0 (XSMM - X4Mt3)” (5-21)
M1,3 and ML4 are columns of the matrix Riccati equation (19) and £=x -~ X
In this case the coefficient matrices are given by
p— o 3
0 X3 0 X, 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
~ ~ 2
HPX= 0 0 0 -C -n '(CX3+77X4) -n
~ 2
0 0 0 n -c (?';Xa-cx4) - X4
29X X 29X
0 0 0 34— -ex (L) -n’
v v v2
| 0 0 0 0 0 0 o |
K 0 0 0 0 0 7
0 0 0 0 0
0 0 0 0 0
+n6{a) | 0 0 0 X4P4 - XJF'4 0 0 (5-22)
0 0 0 - )(BF:1 )(3P3 0 0
0 0 0
0 0 B
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XX

=)

+16 (A)

where 6 (A) is the delta functionand V= (Xg +X

0
10
o o
0 o
0o o
0 0
o o
o o0
o o
o o
0 o0
Hpp =m0 ()

o © O O

o wi &7

o

o © © o

o O © o

2%
4

(5-23)

Because the coefficient matrices of the Riccati equation are time dependent, the auxiliary equations

cannot be solved analytically. The components needed for the quasi-optimum controller (5-21) ccn

be determined by either finding an asymptotic solution to

equations backwards in time. The boundary conditions for the integration as determined by (27)

and (41) are
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[0

0

MM = —— | ©
X,

0

0

where Z(T) = - _’é(ﬂ [PX, (M - X ]

= %M

(5-24)

In the process of solving for the adjoint P(t), the terms needed to compute M(T) are determined.

Hence, a procedure for determining the quasi-optimum correction would consist of first determining

the adjoint P(t) given the state X(t), and simultaneously computing the terminal conditions
(5-24). The Riccati equation can then be integrated backwards, and the quasi~optimum control

determined by (5-21).
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2.6 ADAPTIVE CONTROL

Combination of the technique of quasi-optimum control of the mildly nonlinear process
x = Ax + pf(x) + Bu (described in Section 1.7) with the Kalman filtering technique to estimate

the small parameter y results in an "adaptive" control system.

Problem Statement = Consider the problem of minimizing

T
V= xO(T) = %/‘ (x'Rx + v’ Qu) dt (6-1)

where T is fixed, Q and R are positive-definite matrices and the process is governed by
x = Ax + yFx + By 6-2)
where u is a small parameter.

This problem has been solved using the quasi-optimum feedback control technique in Section 1.7

to yield the quasi-optimum control law

v=Q g’ (K + pl)x (6-3)
where
-K=KA +A’K +KBQ'B’K -R (©6-4)
K(T,T)=0 (6-5)
and -1 =L(A +BQ7'B’K) + (A + KBQ 'B)L + KF + F'K (6-6)

Using the above control law the closed loop system becomes

. , -1 ~

% = (A +BQ 'B’K)x + uF + BQ 1B’ L)x (6-7)
which can be represented by the block diagram shown in Figure (6-1).

These results assume, of course, that the state of the process and the parameter u are known at
all times and that  is a constant. Suppose, however, we do not have complete knowledge of x
or u. Then asensing device would be used to measure the state and an appropriate filter would

construct a best estimate of the state x and the parameter . The situation is as shown in
Figure 6-2.
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‘Development of Optimum Estimates - If we define

C=A+8Q 'B'K
D=F+BQ 'B'L

then the process equations are

where the observations are

y=x+v

(6-8)

©-9)

(6-10)

6-11)

6-12)

Suppose the stochastic process z(t) = {w(t), v(t)} is a "white" Gaussian process with correlation

function
' | Q) o0 _ -
Elz(t)z' (r)} —[0 R*(t)} S(t-1) 6-13)
where 6 (1) is a Dirac delta function, and
w q q’
wi) = ,oQm=| M B (6-14)
q Q
x px XX
To obtain the maximum likelihood estimate of {y(t), x(t)} given y(t), define the following:
[ u y 0
~ = ~ = “ ~ = -
g _X] 0 [Y] Y H e
Then the above process and observation equations become
& 0 0 ~ -
X = 0 C+uD—JX+w (6~16)
£ 1E T
= x + v 6-17)
Y~ lo 1 o 1

The maximum likelihood estimate of X given y can be obtained from the solution to the following

two point boundary value problem.



Bl

P="1o

¥ (x10)) = pO0)
Blt)=0

P
g:l:ﬂ:l
pX

where

O ql X ~
ceuwnl X[ QY] P (6-18)
TH ux XX
X’D' ~ 0 0 0
c’ +uDZ| P+[° R::_I [Y_J -1
(6-20)
(6-21)
(6-22)

To solve the two point boundary value problem, introduce the vector X and the symmetric matrix

P(r)
R(r) =Xer) + Plr)per) (6-23)
which can be written
(1) pir) P " 1le
= +| B e (6-24)
(r) x(1) mx &x 3
Then Rr)=%@) + Pr)d@) + P )plr) (6-25)
and
. 0 0 0 0 U q’
~ _ ~ - ~ “X ~
X(T)~[o C+“'D] ” L)x C+“D] i [ x Qxx] "
(6-26)
Po x' D’ ~+Po 0 0 +Po 0 Po + o
0 C’+uD’ P 0 R, ||y-x 0 R;'
or, with
0 0 0 x’'D’ q q’ 0
= P+P ) f [ um pd - p -1l P (627
D, C+uD 0 C' +ubD 9 Q_ N
we have
. o 0 0 0 0
%= X+P -1 (6-28)
0 C+uD 0 R, - X
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" In expanded form, equations (6-27) and (6-28) become

A -1

V—P'uxR* (% %)

f=c+mig+e Ry -R)
-1

P =q =-P" R_P

o T et ux

P =(C+fD)P -P RK'P +q +P DR
px px XX ux  ux  ouy

(6-29)

(6-30)

6-31)

6-32)

b — A ’ Ay -1 Arnvs _
l;x-(C'*pD)f;x“"l;x(C +uD") PxxR* Pxx+Qxx+D'>‘<P'ux+P#xxD (6-33)

where (6-29) thru (6-33) give the optimum estimates to be used in the system of Figure 6-2.
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CONCLUSIONS AND RECOMMENDATIONS

On the basis of the results achieved in the examples considered, it is our conclusion that the quasi-
optimum control technique described herein is a valuable tool for the design of practical feedback
control systems. Like all engineering methods, it is not a panacea, and there are, no doubt, many
situations for which other methods are more suitable. In order for our method to be applicable to

a particular design problem, two conditions must be met. First, the actual process must be capable
of being approximated by a simpler process, and, second, the exact control law for the simpler
process must be found. Experience with the physical problem to be solved is an aid to meeting the
first requirement, and familiarity with the solved problems of optimum control is an aid to meeting
the second. The successful application of the technique to a particular design problem, however,
will ultimately depend on the user's ingenuity. We regard this as an asset, not a shortcoming of

the technique.

Although the correction matrix M can be expressed in terms of the fundamental (transition) matrix
of a linear system or as the solution to a matrix Riccati equation, the analytical determination of
the matrix is at best an extremely tedious chore and may be impossible. As a consequence, either
numerical integration methods or additional approximations will be required to obtain M. Since
the numerical integration is performed off-line and is feasible even for systems as high as 20th
order (i.e., 210 simultaneous ordinary equations)— perhaps even higher —this is a factor in the

cost of using the method but, in our opinion, is not a serious limitation.

A major unresolved theoretical question entails the performance of the quasi-optimum control law.
Suppose that the performance criterion to be minimized by the optimum feedback control law is
given by VO . The performance V3 achieved by use of the quasi-optimum control law, while
greater than VO should certainly be smaller than the performance V* achieved by using the con-
trol law for the simplified process. Thus it should be possible to demonstrate that V0 <Vig

for a sufficiently small range of £ , which will be the range of validity of the technique. The
demorstration of this, and the estimation of the difference AV = VA - V0 should be investigated
further. Since the quality of performance of the quasi-optimum control law in any practical instance
will almost certainly be established by computer simulation, however, the lack of knowledge of the
range of validity of the technique is not a handicap, provided the user is optimistic enough to try it

out. The limited number of examples considered in the study lead us to conclude that an optimistic

103




viewpoint is justified.

The stability of the quasi-optimum control law is another problem of major importance which
should receive attention. This problem can probably be approached by the same techniques used

to establish the performance of the quasi~optimum control law.

From the theoretical standpoint, the other uses of the quasi-optimum control technique considered
in Section 1.5 should receive more attention. In this regard it is also worth considering whether
the analysis can also be used to develop a trajectory optimization technique which would be a

generalization and a simplification of the technique described by McReynolds and Bryson [9] .

More completed examples will add practical insight into the advantages and limitations of the
technique. Consequently we recommend that the studies of multiple-axis attitude control, and
reentry guidance, described in Sections 2.4 and 2.5, respectively, be completed, and the studies

of the application of the method to other problems in guidance and control be undertaken.
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